

Medieval Archaeology

ISSN: 0076-6097 (Print) 1745-817X (Online) Journal homepage: www.tandfonline.com/journals/ymed20

At the Apothecary: Life in an International District in 15th-Century Bruges

Maxime Poulain, Mathijs Speecke, Anton Ervynck, Jan Huyghe, Jan Moens, Marissa Ledger, Eva Vermeersch, Lieselotte Desnerck, An Lentacker, Wim Wouters, Wouter Van Der Meer, Koen Deforce, Toon De Meester, Nicolas Thomas, Marijn Stolk, Ina Vanden Berghe, Maaike Vandorpe, Alejandra Gutiérrez, Peter Vandenabeele, Wim De Clercq & Bieke Hillewaert

To cite this article: Maxime Poulain, Mathijs Speecke, Anton Ervynck, Jan Huyghe, Jan Moens, Marissa Ledger, Eva Vermeersch, Lieselotte Desnerck, An Lentacker, Wim Wouters, Wouter Van Der Meer, Koen Deforce, Toon De Meester, Nicolas Thomas, Marijn Stolk, Ina Vanden Berghe, Maaike Vandorpe, Alejandra Gutiérrez, Peter Vandenabeele, Wim De Clercq & Bieke Hillewaert (2025) At the Apothecary: Life in an International District in 15th-Century Bruges, Medieval Archaeology, 69:1, 94-139, DOI: 10.1080/00766097.2025.2504289

To link to this article: https://doi.org/10.1080/00766097.2025.2504289

9	© 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
+	View supplementary material $oldsymbol{\mathbb{Z}}$
	Published online: 11 Aug 2025.
	Submit your article to this journal 🗷
Q ^L	View related articles 🗷
CrossMark	View Crossmark data 🗗

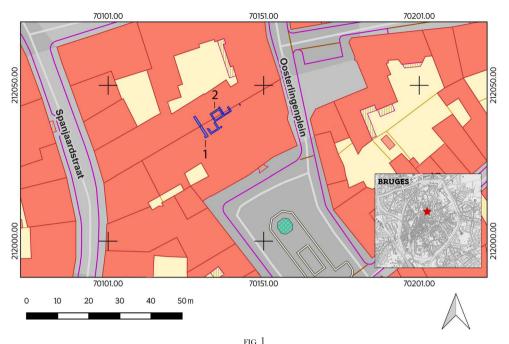
At the Apothecary: Life in an International District in 15th-Century Bruges

By MAXIME POULAIN¹, MATHIJS SPEECKE²,
ANTON ERVYNCK³, JAN HUYGHE⁴, JAN MOENS³,
MARISSA LEDGER⁵, EVA VERMEERSCH⁶,
LIESELOTTE DESNERCK⁷, AN LENTACKER⁸,
WIM WOUTERS⁹, WOUTER VAN DER MEER¹⁰,
KOEN DEFORCE^{1,9}, TOON DE MEESTER⁸,
NICOLAS THOMAS¹¹, MARIJN STOLK⁸,
INA VANDEN BERGHE¹², MAAIKE VANDORPE¹²,
ALEJANDRA GUTIÉRREZ¹³, PETER VANDENABEELE^{1,6},
WIM DE CLERCQ¹ and BIEKE HILLEWAERT[†]

IN 1996, A CESSPIT was uncovered in the backyard of Bruges' Spanish nation house. The interdisciplinary study of this old rescue excavation sheds new light on life in the city's international district between the late 14th and early 16th century. The refuse in the cesspit is what is left of several generations of traders, from a well-to-do apothecary, employing alchemical apparatus in the production of pigments, to Spanish traders documented at the site from the 1480s onwards. This mercantile presence is reflected by an unprecedented array of imported goods, foods, and diseases, ranging from Italian, Spanish and Portuguese ceramics, Near-Eastern glass perfume sprinklers and luxurious silks, to olives, rice and an African parasite. These items give a material dimension to the appeal of Bruges for renowned artists such as Jan van Eyck and spark the debate on the cosmopolitan taste of (non-)local merchants in this international hub of trade.

- Supplemental data for this article can be accessed online at https://doi.org/10.1080/00766097.2025.2504289.
- Department of Archaeology, Ghent University, Ghent, Belgium. maxime.poulain@ugent.be
- ² Department of History, Ghent University, Ghent, Belgium.
- ³ Flanders Heritage Agency, Brussels, Belgium.
- ⁴ Raakvlak, Intermunicipal Service for Archaeology, Monuments and Landscapes of Bruges and Hinterland, Bruges, Belgium.
- ⁵ Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada; McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, Canada.
- ⁶ Department of Chemistry, Ghent University, Ghent, Belgium.
- ⁷ Heritage Department, Province of East-Flanders, Ghent, Belgium.
- 8 Independent researcher.
- ⁹ Royal Belgian Institute of Natural Sciences, Brussels, Belgium.
- ¹⁰ BIAX Consult, Zaandam, The Netherlands.
- ¹¹ Institut National de Recherches Archéologiques Préventives, Paris, France; Laboratoire de Médiévistique Occidentale de Paris, Université Paris 1 Panthéon-Sorbonne-CNRS, UMR 8589, Paris, France.
 - ¹² Royal Institute for Cultural Heritage, Brussels, Belgium.
 - ¹³ Cotswold Archaeology, United Kingdom.

Medieval Bruges has been described as the 'cradle of capitalism' (Murray 2005), a status deriving from its function as an international trade hub, and the presence of mercantile communities from all over Europe. While we are relatively well informed about foreign mercantile communities trading in Bruges and the nature of the commodities they imported, less is known about their material lives and the possible influence they exerted on the lifestyle of local traders.


A hitherto unstudied late-medieval assemblage, excavated in the 1990s at the site of Bruges' Spanish nation house, contains an exceptional range of finds for medieval Flanders. These include previously undocumented Mediterranean imports, delicately crafted items, peculiar environmental remains, and apparatus and materials evoking alchemy. They give a first insight into the diet, health and material setting of successive households living in Bruges' international trading district, and show some of the activities with which individuals were engaged. While most of the archaeology of late-medieval European mercantile communities has thus far focused on the Hanseatic League (eg Gaimster 2005; 2014; Immonen 2007; Mehler 2009; Naum 2013; 2014), this contextualised case study from Bruges allows us to diversify our understanding of the materiality of international merchantry.

EXCAVATIONS AND CESSPIT

In September 1996, rescue excavations were carried out on the grounds of the Sint-Franciscus Xaverius hospital in Bruges (De Witte and Hillewaert 1997). Archaeologists uncovered the heavy, brick back wall of a late-medieval monumental building. Behind this structure, three cesspits were found, of which two were located on a plot that seems to belong to what would later become known as the Spanish nation house, ie the administrative seat and meeting place of the Castilian merchant community (Fig 1). One of these features, cesspit [3], stood out because of the quantity and nature of the artefacts (Fig 2). The other cesspits will not be discussed here, as they either lack finds or are of a 17th- to 18th-century date.

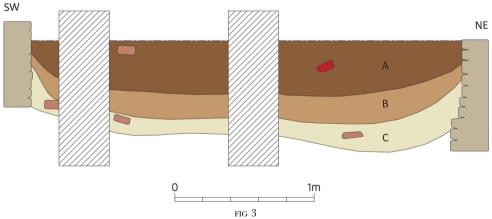
After emptying the southern half of cesspit [3], three stratigraphic layers could be distinguished (Fig 3). The bottom layer [C], rich in debris, likely represents the accumulation of residual material after regular cleaning of the cesspit. The presence of a fragment in proto-stoneware testifies to a use dating back to the early 14th century at least, but the feature may possibly be older. The middle layer [B] consists of faecal material and smaller organic remains, while top layer [A] represents the final fill and abandonment of the cesspit. This interpretation of gradual filling is supported by ¹⁴C-dating of two cherry stones (from layers [A] and [B]) and a sheep femur (from layer [B]). The oldest cherry stone in layer [B] was deposited somewhere between 1423 and 1490 (95.4% probability). ¹⁴ This date partly overlaps with the chronological context of the bulk of the cultural finds in this assemblage, ranging from c 1375 to 1450 (see below). The two other organic samples both show two peaks in the 95.4% probability curve of their calibrated dates, respectively in 1456–1526 and 1557–1632 (femur), ¹⁵ and in 1460–1529

 $^{^{14}}$ RICH-34345: 436 \pm 27 BP. All calibrations have been made using Oxcal v4.4.4 (© Bronk Ramsey 2021), on the basis of the Intcal20 curve (Reimer et al 2020). 15 RICH-33877: 366 \pm 24 BP.

Plan of the excavated structures (in blue) and (inset, red star) location of the site in Bruges. 1. Brick wall; 2. Cesspit [3]. Map by Flanders Heritage Agency.

and 1543–1635 (cherry stone). ¹⁶ The discovery of a coin minted under the reign of Charles V, in the 1540s to 1550s, and a few other objects indicate that an early to mid-16th century date seems most likely for this latest fill of the cesspit.

The material presented below is reflective of several generations living and working at the site. Most objects seem to derive from the dump of refuse in the mid-15th century, and some of the environmental remains may be contemporary (cherry stone—layer [B]). The final fill and abandonment of the cesspit, however, must be attributed to another, more recent household, as corroborated by the combination of radiocarbon dates and datable artefacts.


HISTORICAL FRAMEWORK

The plot in question is located on the eastern side of the *Spanjaardstraat* (Spaniard Street). As its name suggests, the street, known before the 16th century as the *Langhe Winkel* (Long Corner), once formed the heart of an international quarter with a marked concentration of Spanish merchants, predominantly Castilians, who specialised in wool, iron, oil and alum trade (Marechal 1953, 8–9, 21–2). The presence of these merchants dates back to the 14th century, or perhaps even earlier, when they appeared as guests of local hostellers (De Meester 2018, 17–19). However, this Spanish community was not the only group of foreign merchants attested in this area. There was also a heavy

 $^{^{16}}$ RICH-34344: 352 ± 26 BP.

View of the excavated structures (facing south), with cesspit [3] in the centre. Photograph by AZ Sint-Jan, Campus Sint-Franciscus Xaverius.

Profile of cesspit [3]. A. Fill; B. Cess layer; C. Debris-rich clearance layer. Hatched areas: disturbance by foundation pillars. *Drawing by Bieke Hillewaert*.

presence of Italian merchants; the neighbouring corner house, for instance, was successively owned by the merchant-hostellers Franke Aloet, a Lombard (died c 1375), and Jacop van Melane (died c 1422), whose name suggests a Milanese descent (on Franke

Aloet, see SAB, Aanwinsten, nr 7, fol 27v°; on the 'van Melane' family, see De Meester et al 2020, 131–3). The quarter must also have been frequented by Hanseatic merchants, since in 1457 the *Oosterlingen*, as the Hanseatic merchants were then called, came into possession of their own nation house a stone's throw away from the *Spanjaardstraat* (Brown and Dumolyn 2018, 168). Nevertheless, as Bruges gradually lost its leading commercial position in the second half of the 15th century, the Castilian merchants established a more dominant spatial presence by systematically buying up houses until, in 1580, they would own almost all buildings on the street (Gilliodts-Van Severen 1894, 261–2).

The house, later known as the Spanish nation house, was first explicitly mentioned in April 1440, as one of the many buildings owned by Michiel van Theimseke, a prosperous butcher and prominent politician whose family members included hostellers and spice dealers, one of whom even acquired noble status (CAB, OA, Wezerijregisters Sint-Niklaas, book 3, fol 8v°-9r°; see also Schoenmakers 2012–13, vol 1, 52–3 and vol 2, 161–2; and De Meester 2018, 12). At the time, it was known as *Groot Hertsberghe*, referring to the local well-to-do family, 'van Hertsberghe', one of whose members, Jan van Hertsberghe, had probably built the house around 1300 (CAB, OA, Confiscatierekeningen, reg 1, vol 2, fol 171r°). According to his estate, van Theimseke did not live in *Groot Hertsberghe*, so he must have rented it out. Unfortunately, we cannot determine who actually occupied the place at this time, nor trace the lists of owners and/or occupants back further. Nevertheless, the elite and cosmopolitan character of the excavation site is beyond dispute. In fact, the name of the house itself refers to its extraordinary dimensions (*groot*, meaning 'large').

Exactly how the subsequent proprietors, local nobleman Lodewijk II de Baenst and his wife Margriete, came into possession of the house remains unknown, but we do know that they sold it to Jacop Waghe and his wife Lijsbette in 1486 (CAB, OA, Klerken vierschaar Scoudharing 1484–88, fol 135). In the deed of sale, the property is described as a house with rear extensions stretching backwards from the frontside of the Langhe Winkel leading up to a gate that opens onto Genthof, an open space now identified as the Woensdagmarkt. The buyers, however, soon sold the property to an important Spanish wool merchant, Gómez de Soria, who was a resident of Bruges from 1483 (CAB, OA, Klerken vierschaar Scoudharing 1484–88, fol 139). De Soria remained the owner of Groot Hertsberghe until 1494 when the city of Bruges ultimately decided to purchase the property together with two adjacent warehouses. The city donated the property to the community of Spanish merchants to make it their nation house, as depicted in several 16th- and 17th-century images (Marechal 1953, 32-3; Cultuurbibliotheek nd, 'Sorye') (Figs 4-5). By that time, however, the glory days of Bruges' commerce had long gone and in 1705 the Spanish nation of Bruges was dissolved after more than two centuries of decline (Vandewalle 2008, 244-51).

FINDS

In this discussion of cultural and organic finds, only the artefacts that underpin the interpretation of the status and activities of the households at the site are presented. The chronology and typology of locally/regionally produced objects (ceramics, glass, leather, metal, bone, ivory, and parchment) are addressed at length in the online Supplementary Material.

FIG 4

17th-century depiction of the façade of the nation house of the Castilians in the *Spanjaardstraat* with warehouses adjacent on the right, and the buildings formerly belonging to the Spanish merchant Francisco de la Torre on the left. *Copper engraving coloured with watercolour from Antonius Sanderus (1641, vol 1, 273).* © *Ghent University Library.*

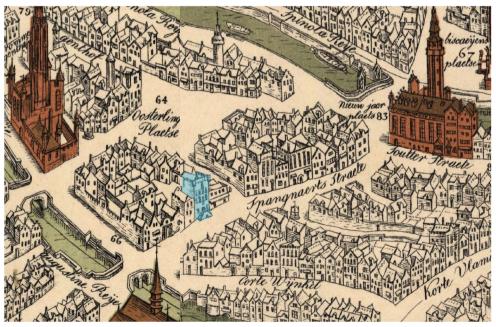


FIG 5

Detail of the 16th-century map of Marcus Gerards (1562), with the Spanish nation house highlighted by the authors in blue. Lithograph of 1881, © City Archive Bruges.

CERAMICS

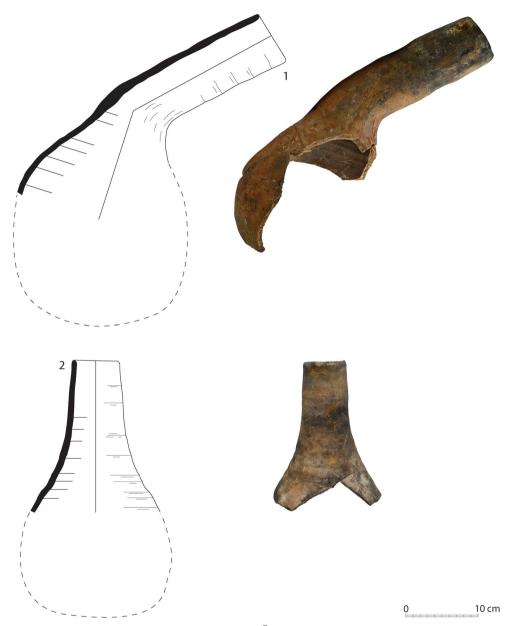
The ceramic assemblage from cesspit [3] counts 1,354 sherds, representing a minimum number of 151 vessels (MNV). The vast majority (greyware and redware) is of local or regional provenance, although at least 17 imported vessels have been identified (Tab 1).

While most of the vessels had a domestic function related to eating, drinking, and hygiene (see Supplementary Material), others document a range of craft activities that must have developed on site. They include several bowls whose interiors are covered with a white scale. While this is sometimes associated with residue left from boiling water, Raman spectroscopy analysis of a residue sample (see below), indicates that at least one vessel (Fig 6) was used in the production of pigments (lead white and red lead).

Moreover, apparatus commonly used for distillation or sublimation were also found (Thomas and Moureau 2022). These finds are related to the glass alembic discussed below. Two types of vessels have been identified (Fig 7): one in the shape of a bottle, the other with a long, inclined neck. Despite its incomplete base, the former could correspond to the Latin *ampulla*, a flask with a wide, rounded base and a narrow neck. The latter is a retort, which is well known in modern distillation laboratories. All vessels lack glazing on the inside, making them unsuitable for proper distillation. It is more likely, as will be seen below, that they were used for sublimation. The consistent presence of soot traces on the outside leaves little doubt that they were positioned over a fire. At least one item bears the negative imprint of the lut, used to seal the opening or its junction with another pot (Thomas 2013).

Among the imported wares are some notable Mediterranean finds. Remarkably, the assemblage lacks any of the typical Spanish lustre wares which are found elsewhere in the County, and the coastal region in particular (De Groote 2012; De Groote and Verhaeghe 2016; Coll Conesa et al 2025). By contrast, the vessels found are two rare Italian ringhandled vases (Fig 8:5), a Seville tin-glazed albarello (Fig 8:4), two Portuguese lead-glazed albarellos and a Portuguese lead-glazed jug (Fig 8:1–3), and an unglazed costrel (Fig 9), also from Portugal.

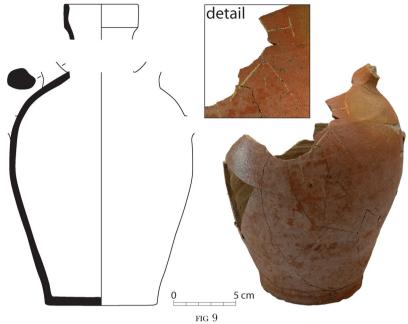
Table 1
Quantification of ceramics recovered from cesspit [3].


	Number of sherds Num		Number o	ber of vessels	
	Count	%	MNV	%	
Local					
Greyware	435	32	39	26	
Redware	821	61	95	63	
Imports					
Proto-stoneware, Germany	1	0.1	1	1	
Siegburg stoneware, Germany	9	1	3	2	
Langerwehe/Raeren stoneware, Germany/Belgium	13	1	5	3	
Unglazed coarseware, Portugal	20	1	1	1	
Lead-glazed wares, Portugal	18	1	3	2	
Tin-glazed ware, Spain	16	1	1	1	
Maiolica, Italy	14	1	2	1	
Unknown	7	1	1	1	
Total	1,354	100	151	100	

Bowl dated c 1375–1450. Analysis has revealed its contents included lead white, red lead, calcium phosphate and gypsum. *Drawing by Maxime Poulain, photograph © Raakvlak*.

The origin of the ring-handled vessels has been much debated, due to similarities between Italian products and those made by Italian potters established in the Southern Netherlands in the early 1500s. Chemical analyses have firmly demonstrated a Tuscan provenance for the group (Blake 1999; Hughes and Gaimster 1999; Hurst 2002; Blake and Hughes 2003). An almost exact parallel with floral motifs in cobalt blue is depicted on the back of the Bladelin Triptych (Fig 10), suggesting a 15th-century date (De Vos 1999, 246; Kemperdick and Sander 2009, 340), which would pre-date the production of the so-called Italo-Netherlandish maiolica of the 1500s.

Imported redwares consist of one costrel, two albarellos and one jug. With its red, micaceous fabric, the costrel is likely to have come from Lisbon, Portugal (Gutiérrez 2021, 529–32). A similar find from Bruges dates to the 15th century (De Witte and Hillewart 1993,


 $${\rm FIG}\ 7$$ Distillation vessels. 1. Redware retort; 2. Bottle. Drawings and photographs ${\ensuremath{\mathbb C}}$ Raakvlak.

86–7; Hillewaert 1993, 64). Interestingly, both vessels have a merchant's mark, indicating that they were probably used as containers for imported commodities (Hillewaert 1993, 65). The albarellos and the jug are lead glazed and the latter shows some burning/soot marks on the side suggesting it might have been (re)used to heat up the contents. The jug was previously published with a proposed Spanish origin (Blake 1999, 53), but the visual examination of the fabrics now indicates Portugal to be a more likely candidate (Fig 11). A plain tin-glazed white

FIG 8

Portuguese lead-glazed redware vessels: 1–2. Albarellos; 3. Jug. Seville tin-glazed ware: 4. Albarello. Italian maiolica: 5. Ring-handled vase. 6. Unidentified tin-glazed jug. *Drawings by Maxime Poulain, photographs © Raakvlak*.

Portuguese redware costrel with incised merchant's mark. Drawing by Maxime Poulain, photographs @ Raakvlak.

Detail of the Bladelin Triptych or Middelburg Altarpiece (Rogier van der Weyden, c 1450) showing an Italian ring-handled vase on the back. This grisaille (painted in grey tones) painting is a late 15th-century addition by an unknown artist. *Photograph Staatliche Museen zu Berlin, Gemäldegalerie/Dietmar Gunne.*

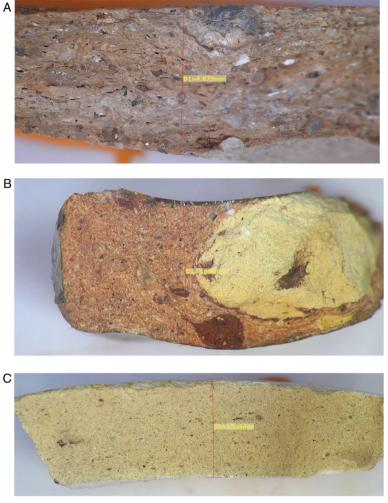


Fig 11 Fabrics of (A) Portuguese redware costrel; (B) lead-glazed albarello and Seville (C) tin-glazed albarello. Photographs \bigcirc Raakvlak.

albarello has the typical fabric of Morisco Wares from Seville, although the shape and lack of decoration are very unusual. One tin-glazed imported jug (Fig 8:6) remains unprovenanced, as it has suffered too much from post-depositional degradation.

GLASS

The excavations yielded a total of 366 sherds of glass, belonging to a minimum of 31 vessels. Vessels from Belgium and its neighbouring countries, mainly Germany and France (see Supplementary Material), normally make up the majority of glass assemblages found in Bruges. This strongly contrasts with the pattern at the site in question, which also displays a very atypical range of other forms and provenances. These finds

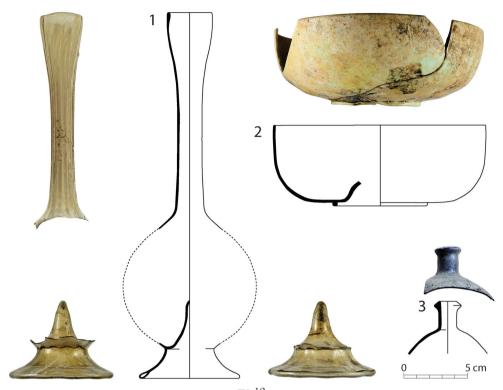


FIG 12
Italian glass fragments: 1. Inghistera bottle; 2. Lattimo bowl; 3. Cobalt-blue bottle. Drawings by Lieselotte Desnerck, photographs © Raakvlak.

are indicative of both the activities in which households engaged and of the trade networks to which they had access, stretching across the Mediterranean.

A first imported item in colourless glass with yellowish hue belongs to an Italian *inghis*tera, a bottle with a long neck, decorated with vertical ribs (Fig 12:1). These vessels are mentioned in Venetian sources from the 12th century onwards and were produced in Murano for centuries (Fondazione Musei Civici di Venezia 2023, § 1). A painted parallel is dated to c 1440 (Fig 13). Two bases in a similar glass type were identified, of which one possibly belongs to the same bottle. These fragments may have belonged to apothecary bottles, with their highly raised base allowing one to stir medicinal fluids. The bowl in Fig 12:2 is made of an opaque white glass, also known as *lattimo* or milk glass. The first *lattimo* glass was probably made in Venice in the late 13th or early 14th century and was rapidly exported (Pezzella 1976, 28; Tait 2012, 149). Several lids in lattimo glass have for example been found in a waterfront dump from London, dated between 1350 and 1400 (Tyson 2000, 71-2). Another glass object that may have been imported from Venice is a small, blue bottle, possibly used for storing valuable liquids such as perfume (Fig 12:3). Blue cobalt-coloured soda glass is certainly not of a local/regional origin, but was produced in Venice from the 14th century onwards. Unfortunately, the scarcity of reference materials for late-medieval Venetian glass does not allow further interpretation at this point.

Two tubular fragments belong to sprinklers made of thin, green-yellowish glass (Fig 14). They were made for the first time in 12th-century Syria and their production continued

FIG 13
Glass inghistera on a detail of Filippo Lippi's Martelli Annunciation (c 1440) in the basilica of San Lorenzo, Florence. Photograph in public domain, image from Wikimedia Commons.

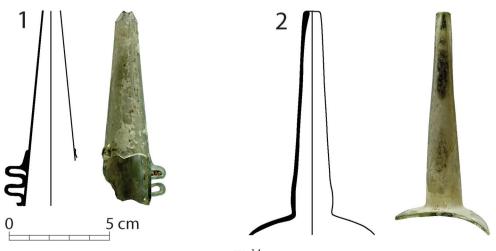
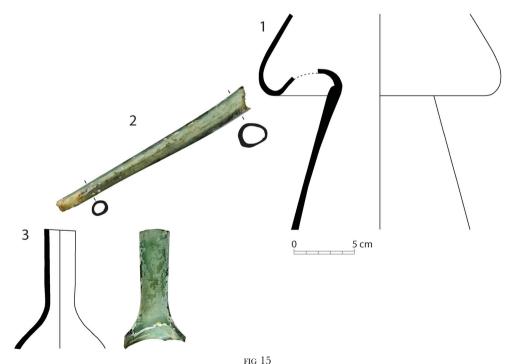



FIG 14 Sprinklers in Islamic-style glass. Drawings by Lieselotte Desnerck, photographs \odot Raakvlak.

throughout subsequent periods in the wider region. These vessels were used to sprinkle perfume or rose water. Venice had a near monopoly on the trade in such luxury Islamic glassware and exported these goods to Northern Europe (Pinder-Wilson 2012, 129; Tyson 2013, 71). Venetian ships unloaded glasses in Flanders in 1394 and in London in 1399, although the exact origin of these wares cannot be identified (Mack 2002, 116). One of the sprinklers in this assemblage is ornamented with a glass wire decoration on both sides of the neck, while the other one remains undecorated. Examples from Jerusalem show strong similarities with the ones found in Bruges (Brosh 2005, 186-7). Although Islamic glass centres declined from the late 14th century onwards, both typological aspects and the visible elongated air bubbles in the glass argue in favour of a Near-Eastern origin for these vessels and not for a Venetian provenance of Islamic-style vessels. Yet another, unpublished bright-blue sprinkler was found in a 15th-century assemblage at the site of the Bruges-Garenmarkt (1990, feature [54]), but was not identified as such at the time. Internationally, parallels are known from the Plantation Place site in London, an area characterised by many shops, warehouses and merchants' residences, where they were found together with other glassware imported from the Islamic world (Tyson 2013, 71).

The tableware finds in this assemblage are complemented by parts of distilling apparatus. Several elements of an alembic were identified, such as the spout and collecting channel (Fig 15:1–2; for a discussion of terminology, see Moorhouse et al 1972; Thomas 2009). An alembic consists of at least three parts: a cucurbit which contains the liquid to be distilled, the helmet placed over the cucurbit, in which vapours condense

Fragments of an alembic. 1. Collecting channel; 2. Spout; 3. Receiver. Drawings by Lieselotte Desnerck, photographs © Raakvlak.

and liquid is led to the receiver (possibly the bottleneck in Fig 15:3). Alembics were often made in glass as it is nonporous, more resistant to acids than ceramics or metal, and allows observation of the distillation process, in addition to more ideological conceptions behind glass as a pure material (Henkes 1994, 322; Thomas and Rodrigues 2017, 198).

PIGMENTS AND THE SYNTHESIS OF VERMILION

While excavating the cesspit, archaeologists encountered various red, yellowish and black powders, together with liquid globules of heavy metals. These were analysed by X-ray crystallography and Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) respectively in 1999. Although these samples are no longer preserved, an unpublished report of the results is kept at the City Archaeological Service of Bruges (Lagas 2000; Tabs 2, 3).

More recently, four extra samples were taken of the residue inside the bowl with white scale (Fig 6) and of the ceramic distilling apparatus (Fig 7), all of which had not been analysed before. For this analysis, Raman spectroscopy was employed, 17 which, as

Table 2 X-ray crystallography of recovered powders (data from Lagas 2000).

	Mineral	Contents (based on weight)
Red powder	Haematite (Fe ₂ O ₃)	97–99%
Yellow powder	Sulphur (S)	40–60%
•	Lepidocrocite (γ-FeO(OH))	40–60%
Black powder	Mercury sulphide (α-HgS)	80-95%
-	Metacinnabar (β -HgS)	5-20%

Table 3
ICP-AES Data of liquid mercury globules recovered from a soil sample (data from Lagas 2000).

Element	Dry matter mg/kg
Mercury (Hg)	68,000
Zinc (Zn)	290
Copper (Cu)	290
Lead (Pb)	160
Silver (Ag)	36
Arsenic (As)	36
Tin (Sn)	32
Vanadium (V)	15
Chrome (Cr)	10
Molybdenum (Mo)	2
Cadmium (Cd)	0.5

Analysis shows mercury with very few impurities, some of which may originate from the archaeological surroundings of the sample location.

¹⁷ Raman spectroscopic analysis was performed with a Bruker Optics Senterra dispersive Raman spectrometer equipped with an Olympus microscope. The measurements were obtained using the 785 nm laser with a laser power of 0.73 mW. Integration time ranged from 10 to 60 seconds with 3–30 accumulations.

	Hydrocerussite/ lead white 2PbCO ₃ ·Pb(OH) ₂	Red lead Pb ₃ O ₄	Newberyite Mg(PO ₃ OH)·3H ₂ O	Calcium phosphate Ca ₃ (PO ₄) ₂
Bowl with white scale (Fig 6)	X	X	X	X
Retort: neck	_	-	_	X
(Fig 7:1) Retort: base	_	-	_	X
(Fig 7:1) Bottle (Fig 7:2)	_	_	_	_

Table 4
Overview of the materials (X), identified by Raman spectroscopy.

	Gypsum CaSO ₄	Cinnabar/ vermilion α–HgS	Mercury chloride HgCl ₂	Titanium dioxide TiO ₂
Bowl with white scale (Fig 6)	X	_	_	_
Retort: neck (Fig 7:1)	X	X	?X	X
Retort: base	_	X	_	X
(Fig 7:1) Bottle (Fig 7:2)	_	X	-	

a molecular technique, provides a complementary perspective to the first results obtained more than 25 years ago (Tab 4). It should be noted that during sampling a small drop of liquid mercury was observed on one of the retorts.

How should these results be interpreted? Certain compounds that appear either as neo-formations or as naturally present in the samples must be excluded from the discussion. The first category undoubtedly includes newberyite, a mineral formed by precipitation in an acid phase and in the presence of organic remains, particularly phosphates (Edwards et al 2007). Similarly, mercury chloride is likely to have formed from the metallic mercury present and Cl-ions, which are ubiquitous in soils. Finally, although titanium dioxide is now a pigment, its use as such is very recent (Eastaugh et al 2004, 364). Therefore, its presence likely derives from the clay material used to make the distillation equipment.

These compounds aside, several other minerals detected in the X-ray crystallog-raphy and Raman spectroscopy relate to pigments used in illumination and for oil and wall painting. Haematite is the principal colourant in various iron oxide-based pigments, such as red ochre (Eastaugh et al 2004, 183; Helwig 2007). Lepidocrocite, as an iron oxyhydroxide, is equally a constituent of ochre, with colours ranging from yellow to orange (Eastaugh et al 2004, 236; Helwig 2007). However, as the nature of the samples is not really well defined, these iron-based pigments could have originated in the cesspit due to the alteration of iron objects.

There is less doubt about the link between the lead compounds found in the bowl and their use as pigments. Since Antiquity, lead white has been obtained by corroding lead plates with vinegar fumes, manure, tan bark or urine (Gettens et al 1993a). Red lead is subsequently prepared by heating lead white (Fitzhugh 1986; Eastaugh et al 2004, 229). Calcium phosphate or bone white, present in the same bowl, has equally

been employed in Flemish painting as a substrate for metal-point drawing, in the priming layer or as an additive to accelerate the drying of the oil binder (Sanyova et al 2021). Gypsum could also be used in ground layers. However, this practice is mainly associated with southern Europe (gesso), while calcium carbonate was preferred north of the Alps (Stols-Witlockx 2012, 162–3). Therefore, one can wonder whether the presence of gypsum is also due to its natural presence in the soil. At this stage, it is difficult to explain the association of these different minerals on the inside of the same vessel. The bowl might have served to prepare a particular mixture, which could either suggest an artistic practice on site, or the preparation of ready-to-use products for painters.

Both the bottle and retort contained traces of mercury sulphide (HgS), popular throughout history as a bright red pigment (Gettens et al 1993b). Mercury sulphide can either be mined or synthesised from mercury and sulphur. In the latter case, it is purer and brighter. In art history, it is commonly called cinnabar when occurring naturally, and vermilion when it is manufactured and used as a pigment. The most important source of cinnabar and mercury worldwide lies in Almadén (Spain), and this has been the case since medieval times. Wendy Childs (1995, 29) mentions the arrival of Spanish mercury in pots at Southampton and Sandwich in the 1460s. Chemical analyses of socalled 'mercury jars' found in the Flemish fishing village of Raversijde also point to a provenance in the Mediterranean and further support Almadén as a source for mercury in Flanders (Zeebroek et al 2009, 50; Vince 2013; 1115), either as an unprocessed ore, but more likely in its refined elemental form (on the extraction of mercury from cinnabar: Marchini et al 2022). In Bruges, the occurrence of elemental mercury globules and sulphur in the assemblage indeed seems to suggest that vermilion was produced in situ. Various experimental studies have recreated this pigment on the basis of medieval recipes (Garcia-Moreno and Thomas 2008; Miguel et al 2014). These recipes used sublimation, also known as the 'dry method'.

In the medieval Occident, numerous recipes on the making of vermilion exist according to this dry method. All these recipes are quite simple and can be summarised as follows: put sulphur and mercury in a container, preferably into an aludel (Moureau and Thomas 2015), which is placed on top of candescent charcoal. Vermilion is formed on the inner surface of the lid or base of the container. All the recipes dating before the 14th century form one single group assimilated to a 'direct process' of vermilion fabrication. The 'indirect process', of higher complexity, commences from the 14th century onwards. It consists in heating mercury together with sulphur, most of the time in a crucible, in order to form a black, compact, solid, and fragile sulphide (probably metacinnabar). This product is collected and ground, and finally sublimated into red mercury sulphide in an aludel or a retort. Both processes are mentioned in texts of the time (Lagercrantz 1924, 16; Merrifield 1999, 478–81, 522). In his Secrets, Alexis of Piedmont, pseudonym of the alchemist Girolamo Ruscelli, describes the second method as the best for making vermilion in high quantities, as done by the Germans (Ruscelli 1559, fol 85r). This indirect process seems to be preferred until the generalisation of the less toxic 'wet method' in the 19th century, which was basically dissolving the mixture of mercury and sulphur in a solution of potash and water.

While there is a strong probability that synthetic cinnabar was manufactured *in situ*, specifying whether a direct or indirect process was used is difficult. The presence of metacinnabar (β -HgS) is not sufficient to confirm that the indirect process was the preferred method, as this compound is an alteration product of cinnabar (α -HgS) that can

also be produced during the direct process. However, the presence of two types of sublimation vessels, *ampulla* and retort, in the same layer makes the indirect process more likely.

TEXTILE

The waste from the cesspit contained 39 small textile fragments, originating from at least ten different fabrics. Parts of the same fabric were found scattered throughout the different layers [A] and [B], which is why all of the textiles will be discussed here as one assemblage. Most of the fabrics seem to be made of wool and degummed, cultivated silk (*Bombyx mori* L.). This is most likely because they are animal-based fibres, which have a good chance to survive in the relatively wet and acidic conditions of a cesspit, whereas plant-based fibres, like linens, are not as likely to survive such circumstances (Teunissen and Stolk 2024, 16; Comis 2017).

Among the silk fragments are two very fine fabrics. One of them is a plain weave, with c 26 threads/cm (Figs 16, 19:1). The refined weave still bears traces of a red dye, identified as kermes. 18 Kermes, derived from the kermes scale insect (Kermes vermilio Planchon), was one of the most prestigious and expensive dyes of the Late Middle Ages. Its popularity dwindled with the advent of Mexican cochineal in the first half of the 1500s (Cardon 2007, 614-7). Another piece of silk cloth is woven in an extremely fine satin weave—with one thread going over four perpendicular threads—and a number of no fewer than c 80 threads/cm (Fig 17, 19:2). Here, HPLC-PDA analysis detected only tannins, which could have been used to enhance the colour fastness of the dye. Both these fabrics seem to have been used for clothing, given their soft character and the clearly visible sewing traces. The cloths were likely imported from Italy or Spain, since a number of cities in these countries had a flourishing and developed silk industry in the course of the Late Middle Ages. But it cannot be ruled out that the fabrics were produced locally in Antwerp, Bruges, or Lille, where silk industries developed from the early 16th century onwards as a result of the transfer of knowledge and craftsmanship from the Mediterranean (Colenbrander 2010, 25; Teunissen and Stolk 2024, 36). Two silk ribbons were also present, made in grosgrain binding and using a heavier yarn for the weft than for the warp (Figs 18, 19:3). Again, analysis showed the presence of tannins, but this time also dyed yellow with a luteolin-containing dye source, such as weld, saw-wort, dyer's broom, chamomile, daphne, or another equivalent plant (Cardon 2007, 167-85). Ribbons like these were often used as trimmings for clothing or accessories (Teunissen and Stolk 2024, 69, 85). Furthermore, there was some silk yarn that had been looped through itself several times and was most likely used to stitch or embroider a linen fabric of clothing or such, from which the linen fabric had perished and only the silk thread was preserved.

Among the textiles found are a couple of woollen fragments. The most diagnostic pieces are a fabric in a basic plain weave (Fig 19:4) and a fragment in a twill weave (Fig 19:5). The plain-weave fabric counts c 20 threads/cm and shows traces of surface treatment. It seems that after the weaving the wool was fulled to create a denser and water-repellent fabric. This idea is supported by the fact that the threads of the warp and the

¹⁸ The identification of organic dye components was performed at the Royal Institute for Cultural Heritage, using high-performance liquid chromatography with photodiode array detection (HPLC-PDA). The procedure is described in Vanden Berghe et al (2009).

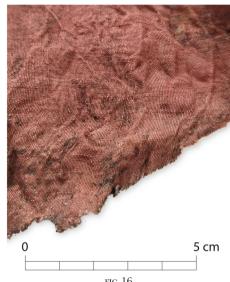
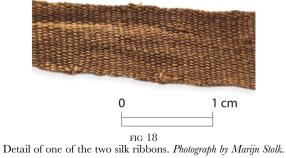



FIG 16 Detail of the red-dyed silk fabric. *Photograph by Marijn Stolk*.

One of the silk fragments showing a satin weave. Photograph by Marijn Stolk.

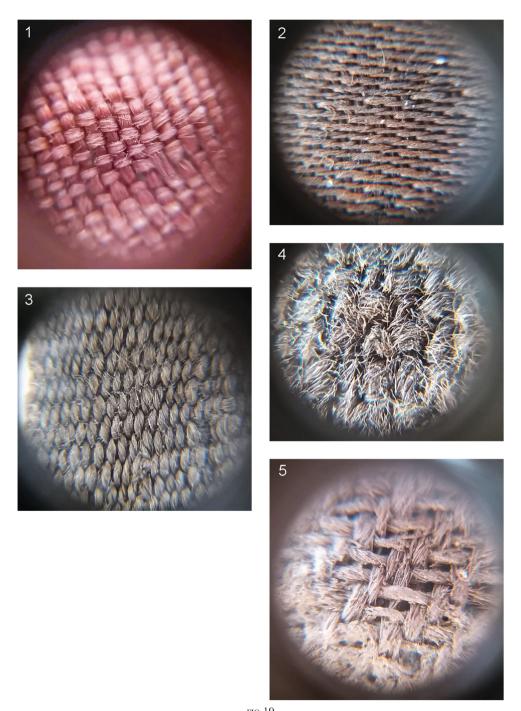


FIG 19

Magnifications x 60 of some of the silk and wool fabrics: 1. Red-dyed silk in plain weave; 2. Refined silk in satin weave; 3. Ribbon in grosgrain binding; 4. Woollen fabric in plain weave; 5. Woollen fabric in 2/2 twill weave. Photographs by Marijn Stolk.

weft are twisted in different directions; the so-called S-twist and Z-twist, which was applied to increase the effect of the fulling of the wool (Zimmerman 2007, 60–1). The twill fabric shows a refined and especially regular quality, which seems to have been made of worsted, a fine, smooth yarn spun from combed long-staple wool. These types of fabrics, of a subtler and softer quality, were used to make clothes (Zimmerman 2007, 59; Teunissen and Stolk 2024, 34). Both of the woollen fabrics show a certain level of specialisation regarding the wool industry that one might expect in these regions during the late-medieval and early modern periods.

Besides the clearly recognisable pieces of silk and woollen cloth, there were a number of small fragments in plain and twill weave which felt hard and appeared to be impregnated, causing the textile to crumble into smaller fragments. Fragments like these commonly appear in cesspit contexts. Further research is needed in order to interpret these finds.

In conclusion, although a comparative framework is lacking, we can say that both the silk and wool fragments are of a (very) high quality and show a high level of skill and specialisation. While suggestive of financial status at first glance, it should however be noted that most luxurious, expensive fabrics were likely used for a long time, and subsequently reused, repaired, repurposed, inherited, and sold at second-hand markets (Teunissen and Stolk 2024, 11–13; Du Mortier 1991).

LEATHER

From the cesspit, 383 leather fragments were recovered, scattered throughout the fill (see Supplementary Material and Moens et al 2023). In general, the leather finds form a homogeneous assemblage, dating to the last quarter of the 14th or the early 15th century. The most remarkable characteristic of the finds collection is that, apart from a few composite specimens, the soles show almost no traces of wear. At the same time, there are also no patches in the entire assemblage. This indicates that the shoes were discarded before they were worn-out. Given the homogeneous nature of the assemblage, this may even have happened as part of a single clearance event. Olaf Goubitz et al (2001, 12) believe that the lack of wear on shoes is an indication of a higher status of the owners. Possibly, they could afford to follow trends more quickly and get rid of shoes that were 'out of fashion' before any visible wear had occurred.

Despite its limited size, the collection shows a varied picture in terms of shoe types, the majority being rather low types (Fig 20). In terms of social differentiation, Willy Groenman-van Waateringe and Velt (1975, 104–10) were able to establish in their study of iconographic material that in the 14th and 15th centuries the well-to-do members of society were the ones depicted with low shoes.

A further indication for high status is provided by the soles with very pronounced long S-shaped noses and some upper fragments indicating the presence of long-pointed shoes or *poulaines* (Fig 21). Written and iconographic sources show that this type of footwear was indeed worn by the upper social classes. A final remarkable characteristic of the collection is the large number of soles and straps from wooden and leather pattens. It has been stated that the proportion of pattens could be indicative of the status of a particular household or context (Goubitz et al 2001, 12; Swann 2001, 78). Pattens used as overshoes represent an additional cost to regular footwear, thus they would be more

Shoe types found in the cesspit. Shoes with side-laced fastening: 1. Aquilia type; 2. Criblet type; 3. Shoe with double lace pair on the medial side; 4. Shoe with a bifurcated lace pair (Baynard's type); 5–6. Buckle shoes; 7. Shoe with combined fastening; 8. Button shoe with overlapping back section (Lemoine type); 9. Wooden patten; 10–12. Leather pattens; 13. Sandal. *Drawings by Jan Moens*.

 $$\operatorname{FIG}\ 21$$ Composite sole fragments with pronounced long S-shaped noses. Photographs ${\ensuremath{\mathbb{C}}}$ Raakvlak.

likely to occur among the upper social classes (Haak 2018, 42–4). Specifically leather pattens, with their complex construction method and combined use of multiple materials, must have been an expensive type of footwear.

ANIMAL REMAINS

The assemblage of animal remains from the cesspit (Tabs 5, 6) was mainly collected by hand; only a few pieces derive from sieved samples. Most of the material was found in layer [A], with the finds from layers [B] and [C] possibly belonging to the same (gradual) deposition. Based on a radiocarbon date (see above), it is assumed that the animal assemblage dates from the second half of the 15th to the first quarter of the

Quantification of mollusc, avian and mammalian remains (+ = present, not quantified).

Layer	A	В	C	?	Total
Marine molluscs					
Common whelk (Buccinum undatum)	1	_	_	_	1
Common mussel (Mytilus edulis)	190	2	2	5	199
Flat oyster (Ostrea edulis)	39	29	_	6	74
Common cockle (Cerastoderma edule)	10	_	_	_	10
Birds					
Eurasian goshawk (Accipiter gentilis)	_	1	_	_	1
Greylag or domestic goose (Anser anser ?f. domestica)	1	_	2	_	3
Mallard (Anas platyrhynchos)	6	_	_	1	7
Common teal (Anas crecca)	1	_	_	_	1
Grey partridge (Perdix perdix)	1	_	_	_	1
Domestic fowl (Gallus gallus f. domestica)	156	17	1	36	210
Carrion crow (Corvus corone)/rook (Corvus frugilegus)	1	_	_	_	1
Small passerine (Passeriformes sp.)	1	_	_	_	1
Eggshell	+	_	_	_	+
Unidentified bird remains	140	7	3	12	162
Mammals					
Rabbit (Oryctolagus cuniculus)	13	_	_	5	18
Black rat (Rattus rattus)	_	1	_	_	1
Rat (Rattus sp.)	1	_	_	_	1
Rodent (Rodentia sp. cf. R. rattus)	_	2	_	_	2
Cat (Felis silvestris f. catus)	60	61	1	15	137
Dog (Canis lupus f. familiaris)	10	2	3	_	15
Pig (Sus scrofa f. domestica)	19	5	1	3	28
Cattle (Bos primigenius f. taurus)	72	7	_	8	87
Sheep (Ovis ammon f. aries)	17	9	1	3	30
Sheep (Ovis ammon f. aries)/goat (Capra aegagrus f. hircus)	265	42	_	48	355
Rib large mammal	35	1	2	8	46
Rib medium-sized mammal	123	3	_	5	131
Rib small mammal	1	_	_	_	1
Vertebra large mammal	15	_	_	1	16
Vertebra medium-sized mammal	13	_	_	5	18
Unidentified mammal remains	310	11	1	22	344
Coprolite	2	_	_	_	2
Total	1,503	200	17	183	1,903

Gurnard (Triglidae sp.)

Turbot (Scophthalmus maximus)

Flatfish (Pleuronectidae sp.)

European eel (Anguilla anguilla)

Carp family (Cyprinidae sp.)

Northern pike (Esox lucius)

Unidentified fish remains

Total

Common sole (Solea solea)

Turbot or brill (Scophthalmus sp.)

European plaice (*Pleuronectes platessa*)

European flounder (*Platichthys flesus*)

Atlantic horse mackerel (Trachurus trachurus)

Common carp (Cyprinus carpio f. domestica)

Black seabream (Spondyliosoma cantharus)

Quantific	cation of fish re	emains.		
Layer	A	В	C	?
Thornback ray (Raja clavata)	2	_	_	_
Ray (Batoidea sp.)	2	_	_	_
European conger (Conger conger)	3	_	_	_
Atlantic herring (Clupea harengus)	7	_	_	_
Atlantic cod (Gadus morhua)	11	_	_	4
Haddock (Melanogrammus aeglefinus)	147	-	_	8
Whiting (Merlangius merlangus)	2	-	_	_
Codfish (Gadidae sp.)	6	_	_	_

12

3

2

1

3

49

33

212

108

1

6

8

9

43

663

0

0

TABLE 6
Quantification of fish remains.

Total

2

23

7

15

155

2

6

13

3

2

1

3

49

34

214

108

1

6

8

9

45

681

1

1

2

2

18

16th century, or from the second half of the 16th to the first third of the 17th century. As a technical report on these finds is available in Dutch (Ervynck et al 2023), only the most relevant information will be summarised here.

Marine products were common at the table of the Bruges' household and comprise both molluscs (common whelk, common mussel, flat oyster and common cockle) and fish. Among the latter, the large numbers of flatfish (Pleuronectidae sp.), including European plaice and European flounder), common sole and haddock are striking. These latter two in particular could indicate frequent consumption of fresh fish caught in the southern part of the North Sea, a pattern in stark contrast to the low numbers of cod, of which, at that time, large specimens were imported from the North in processed form, such as stockfish (fresh dried, not salted) or klipfish (salted and dried). Other marine species that will have arrived mostly as processed products at the Bruges' market, ie Atlantic herring and (possibly) whiting, were also found rarely in the cesspit: however, this could also be due to the lack of extensive sieving. Other less common marine fish include thornback ray, European conger, gurnard, Atlantic horse mackerel, black seabream and turbot and/or brill. Freshwater fish hardly contributed to the diet (although extensive sieving could have yielded more evidence for smaller species such as the cyprinids) but include appreciated products in culinary terms, ie European eel, common carp and northern pike. The latter two species will have been eaten fresh and indicate fish breeding in ponds (Benoit and Matteoni 2004), an enterprise of the richer landowners of that time.

The consumption of birds was rather high but dominated by domestic fowl. Other species will most probably have been hunted in the wild (mallard, common teal, grey partridge, small passerine) or were possibly not eaten at all (carrion crow or rook). The status of the greylag goose (wild or domestic) could not be ascertained. An exceptional find is that of a bone from the Eurasian goshawk, a hunting bird associated with the leisurely activities of the elite (see Van den Abeele 1994).

The not infrequent presence of rabbit remains could also be seen as a link with the higher classes, as the animal was kept in warrens (often together with partridges, see Ervynck et al 1994) or was put out in uncultivated areas such as the dune belt, the exploitation of which was the privilege of the wealthy. Large game species are absent in the assemblage; meat consumption was clearly based upon the slaughtering of domestic mammals, ie pig, cattle and sheep. The presence of goat remains could not be totally excluded but no conclusive evidence for this animal was recognised (an omnipresent pattern in urban sites from the late- and post-medieval Low Countries). Sheep was the most frequent domestic meat provider (77%), followed by cattle (17%) and pig (6%). Sheep and, as always, pigs were slaughtered at rather young ages, while the cattle remains show the presence of both young calves and mature animals. The mammal collection is completed by bones of rodents, cats, and dogs, none of which show traces of human processing or modification.

In general, the animal assemblage indicates a rather wealthy household, frequently consuming fresh fish, chicken and some wild birds, and the meat of young sheep and cattle (in addition to pigs). There are links to the higher part of society, such as the goshawk, rabbit and partridge remains, and the consumption of fish from fishponds. Whether the preference for mutton was a culinary pattern linked to the cultural background of this household of immigrants cannot be proven. It could be explained as a reflection of the deforested landscape around Bruges, more suited for sheep- and cattle breeding than for pig herding. Unfortunately, at present, these alternative explanations cannot be further explored due to the poor availability of enough contemporary assemblages from Bruges or surrounding sites for comparison with the finds from the *Spanjaardstraat*.

BOTANICAL MACRO-REMAINS

During the excavation, botanical bulk samples were taken from layers [A] and [B]. Part of the samples were sieved soon after and subsequently air dried and stored in plastic bags. Drying inhibits identification of 'soft' botanical macro-remains that consequently lose their morphology. Additionally, from both layers some samples were kept untreated, and also stored in bags and dried out to unmanageable hard lumps. These samples were submerged in water to remove probable mercury contamination by float sink separation. Afterwards, they were gently boiled in a 5% potassium hydroxide (KOH) solution to improve separation, and sieved. The residues were analysed with a stereo microscope (10×5).

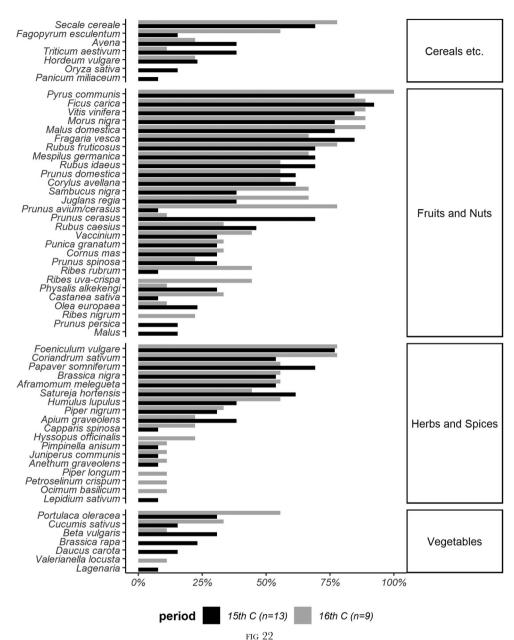
The botanical contents of the sieved and dried samples are presented in Table 7. As expected, most macro-remains derive from edible cultivated plants or from wild species known to have been gathered for edible parts. These species can be grouped in several economic or culinary categories: cereals, vegetables, herbs and spices, nuts, fruits, and 'other'. Most species fall in the categories of herbs and spices, and fruits.

Table 7
Botanical macro-remains in layers [A] and [B].

Category	Scientific name	Vernacular name	A	В
Economic plants				
Cereals	Cerealia, pericarp fragment	Cereals, bran fragment	++++	++++
	Oryza sativa, palea/lemma	Rice, chaff	+	_
	Triticum aestivum/durum (c)	Wheat	1	_
Vegetables	Portulaca oleracea	Purslane	+	+
Culinary herbs/spices	Aframomum melegueta	Grains of paradise	2	_
	Apiaceae (m)	Parsley family	_	+
	Brassica nigra	Black mustard	+	++
	Capparis spinosa	Caper	_	1
	Pimpinella anisum (m)	Anise	_	3
	Coriandrum sativum	Coriander	+	+
	Foeniculum vulgare	Fennel	++	+
	Foeniculum vulgare (m)	Fennel	+	++
	Papaver somniferum	Opium poppy	1	++
Nuts	Castanea sativa	Sweet chestnut	+	1
	Corylus avellana	Hazel	+	+
	Juglans regia	Walnut	_	+
Fruit	Ficus carica	Fig	+++++	++++
	Fragaria vesca	Wild strawberry	++	++
	Malinae, sclereid	Apple subtribe, stone cells	+++	1
	Malus domestica	Apple	+	_
	Malus domestica, endocarp	Apple, core fragment	++	1
	Malus/Pyrus	Apple/Pear	+++	++
	Mespilus germanica	Medlar	2	
	Morus nigra	Black mulberry	+++	++
	Olea europaea	Olive	i	4
	Physalis alkekengi	Chinese lantern plant	1	_
	Prunus avium	Sweet cherry	1	_
	Prunus avium/cerasus	Sweet/sour cherry	++	+
	Prunus cf. cerasus	?Sour cherry	1	_
	Prunus spinosa	Sloe plum	1	_
	Prunus domestica	Plum	+	3
	Punica granatum	Pomegranate	$\overset{1}{2}$	1
	Pyrus communis	Pear	++	+
	Pyrus communis, calyx	Pear, core fragment	+	1
	Ribes	Currant	1	1
			- -	1
	Ribes rubrum, calyx	Red currant, sepal		
	Rubus fruticosus	Blackberry	++	++
	Vitis vinifera	Grape	+++	+++
Orlean	Vitis vinifera, fruit (m)	Grape, fruit	1	+
Other Wild plants	Humulus lupulus	Hops	1	_
Arable weeds	Agrostemma githago	Corn cockle	++	+
	Atriplex patula/prostrata	Common/spear-leaved orache	_	i
	Chenopodium album	Fat hen	+	1
	Fallopia convolvulus	Black bindweed	+	_
	Knautia arvensis	Field scabious	i	1
	Medicago minima, fruit	Burclover, pod	1	_
	Persicaria lapathifolia	Pale persicaria	1	_
	Persicaria maculosa	Lady's thumb	1	
				_
	Sinapis arvensis	Wild mustard	+ 1	_
Crossland areasis:	Sonchus asper	Prickly sow—thistle		_
Grassland species	Carex panicea	Carnation sedge	1	_
	Equisetum, nodium	Horsetail	1	_
	Galium palustre	Common marsh-bedstraw	1	_
	Poaceae	Grass family	+	_

(Continued)

Table 7
(Continued).


Category	Scientific name	Vernacular name	A	В
	Ranunculus sardous	Sardinian buttercup	1	_
	Rumex acetosella	Sheep's sorrel	+	_
	Rumex crispus, perianth	Curly dock, perianth	_	1
	Rumex crispus/obtusifolius	Curly/broad-leaved dock	1	_
	Rumex, stem	Dock, stem	_	1
	Trifolium, calyx	Clover, sepal	+	_
Marshland species	Oenanthe fistulosa	Tubular water-dropwort	_	1
Trees and shrubs	Indeterminate, bud	Indeterminate, bud	1	_
	Populus, bud	Poplar, bud	+	_
	Quercus, bud	Oak, bud	1	_
	Salix, bud	Willow, bud	++	_
Peat-forming species	Bryophyta, stem	Mosses, stem	1	_
- ·	Calluna vulgaris, perianth	Heather, sepal	1	_
	Calluna vulgaris, wood	Heather, wood	+	_
	Calluna vulgaris, twig	Heather, twig	_	1
	Erica tetralix, leaf	Cross-leaved heath, leaf	+	_
	Erica tetralix, twig	Cross-leaved heath, twig	_	+
	Molinia caerulea, epidermis	Purple moor-grass, epidermis	++	_
	Monocots, rizome	Monocots, rizome	_	+
	Rhynchospora alba, stem tissue	White beak sedge, stem tissue	+	_
	Sphagnum, leaf	Peat moss, leaf	+	1

(c) = charred, (m) = mineralized, - = absent, + = 1–10, + + = 10–100, +++ = 100–1000, +++++ > 1000. Rare finds are represented by their actual numbers.

The wild species can be subdivided into: arable weeds, grassland species, marshland species, trees and shrubs, and peat-forming species. The botanical macro-remains in these categories were either brought into the household(s) unwittingly (as food contaminants, or in mud, dung or street waste tracked inside), or as part of economically useful plant material. Examples of economic plant materials in households are straw, hay, and fuel (peat or wood). One of the dried-out lumps from layer [A] turned out to consist of stem epidermis and rizomes of purple moor-grass (Molinia caerulea) and white beak sedge (Rhynchospora alba), both peat-forming species. As such this lump might have been a fragment of a peat brick used for heating. Twigs of heather and other woody species may have been used for brooms and brushes. Horsetail (Equisetum sp.) might be used as a polishing agent or for scouring pots. Here, emphasis will be placed on the culinary species.

The species found in the cesspit are attributed mostly to the consumption of products prepared with locally produced, everyday items such as grain, herbs, fruits and nuts. Botanical macro-remains of vegetables are a relatively rare occurrence in cesspits, owing to a lack of corrosion resistant parts. Some species of leafy vegetable found here are an exception to this, eg purslane (*Portulaca oleracea*).

In spite of the predominance of domestic products, finds of more exotic species are rather frequent in this cesspit. These species may be of indicative value for the social classification of the residents' dietary customs. To classify this indicative value, the relative frequency of several selected species in Flemish cesspits from the 15th and 16th centuries has been charted (Fig 22). This shows that some Mediterranean-originating products like grapes (*Vitis vinifera*), figs (*Ficus carica*) and mulberries (*Morus nigra*) were very common products for the inhabitants of Flanders, at least with the occupants of houses

Frequency of species from several categories of botanical macro-remains in cesspits in Flanders from the 15th and 16th century. The assignment to either century is based on the end date of the feature. Data were obtained from BELRADAR, the archives of BIAX Consult and reports provided by the Flanders Heritage Agency. Included are cesspits from Bruges (Hillewaert and Van Besien 2007; Assië 2022; Van Remoorter 2022); Mechelen (van der Meer 2019; 2022; Coremans 2020; Speleers 2020); Leuven (Smeets and Vander Ginst 2012); Antwerpen (Terryn 2021); Geraardsbergen (De Smaele et al, in prep); Aalst (De Groote et al 1999; 2004; 2009; De Groote and Moens 2018); Dendermonde (Beeckman and Van Hecke 2017); Ename (Ervynck et al 1999); and Raversijde (Pieters et al 1999)

with cesspits. Historical sources point to local production of grapes and figs, but also to large-scale trade in dried fruits from the Mediterranean (van Haaster 2008). Other Mediterranean products, like rice (Oryza sativa), olives (Olea europaea), pomegranates (Punica granatum), and capers (Capparis spinosa), are less common, or even quite rare in Flemish cesspits. Their macro-remains are durable, so taphonomy cannot explain their relative scarcity. Exclusivity might have limited their consumption, but these species are found in both high-status and (upper) middle-class households. The latter might have emulated dietary customs of the former, but perhaps their consumption was less a matter of exclusivity and more of (an acquired) taste. The only spice encountered is grains of paradise (Aframonum melegueta), a product of West Africa, which is commonly found in cesspits of the 15th and 16th centuries.

In conclusion, the majority of the botanical macro-remains are from everyday products such as cereals and local produce. They indicate a diet that included many different kinds of fruit, herbs and at least some vegetables. Several species have a Mediterranean or more exotic origin. Some of these, such as fig, grape, and mulberry, were common. Others were more exclusive, or rarer at the least, such as olive, rice, caper, pomegranate, and grains of paradise. They can be considered signs of upper-class dietary habits, or perhaps of a Mediterranean influence on culinary customs.

POLLEN ANALYSIS

Three subsamples for palynological analysis were taken from the bulk samples prior to their sieving for the study of botanical macro-remains, one from layer [A] and two from layer [B]. These subsamples, c 2 cubic cm each, have been treated according to standard methods for pollen analysis (Moore et al 1991). From each sample, a minimum of 400 pollen grains were studied using a transmitted light microscope with magnifications of 400x and 1000x. Identifications are based on Punt et al (1976–2003), Valdés et al (1987), Moore et al (1991), and Beug (2004).

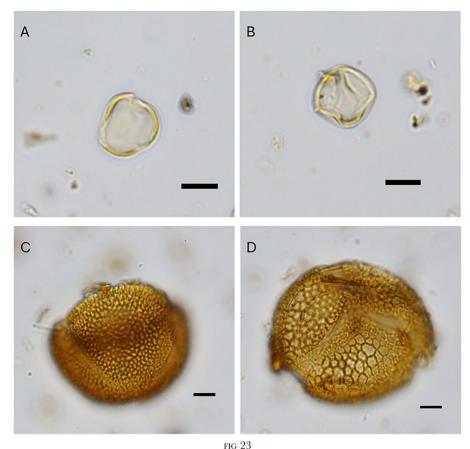
The pollen assemblages of all studied samples show low percentages of arboreal pollen and high percentages of food plants and associated weeds (Tab 8), indicating that food and faecal material was the major source for pollen entering the cesspit and not atmospheric pollen deposition (Deforce 2017).

The high values of cerealia pollen, a common feature of (post-)medieval cesspits, reflects the importance of cereal-based food in the diet of the users of the cesspit (Deforce 2017; De Cupere et al 2022). Other food plants from which pollen has been found are chervil (Anthriscus cerefolium), chard/beetroot (Beta vulgaris), borage (Borago officinalis), capers (Capparis spinosa), anise (Pimpinella anisum), pea (Pisum sativum), spinach (Spinacia oleracea), cloves (Syzygium aromaticum), rye (Secale cereale) and grape (Vitis vinifera). Several of these plants also have been identified during the analysis of the botanical macro-remains (see above), but chervil, chard, borage, pea, spinach, cloves and rye have only been found during pollen analysis.

Cloves are the dried flower buds of *Syzygium aromaticum*, which explains the rather high percentages of pollen found from this exotic spice. Cloves, imported from the Moluccas, an archipelago in today's Indonesia, are believed to have been very expensive in late-medieval Europe (Collet 1992). However, the frequent occurrence of pollen from *S. aromaticum* in cesspits from this period in the Low Countries suggests that it was rather widely used (Deforce 2017; Deforce et al 2019). Additionally, capers are exotic to north-

Category	Scientific name	Vernacular name	A	B-1	B-2
Cultivated plants	Anthriscus cerefolium	Chervil	0.4	_	_
	Beta vulgaris	Chard/beetroot	0.2	_	0.2
	Borago officinalis	Borage	_	0.7	0.2
	Capparis spinosa	Capers	4.1	6.0	4.1
	Cerealia undiff.	Cereals		22.6	
	Coriandrum sativum	Coriander	-	0.2	_
	Pimpinella anisum	Anise	0.2	-	
	Pisum sativum	Pea	1.1	_	0.2
			3.9		
	Spinacia oleracea	Spinach		0.5	6.8
	Secale cereale	Rye	-	0.2	_
	Syzygium aromaticum	Cloves	4.8	_	0.5
m 1 1: 1 1	Vitis vinifera	Grape	0.2	-	0.5
			28.4	30.2	49.1
	Alnus	Alder	0.2	_	0.2
Trees and sin dos	Arbutus unedo		-	0.5	0.4
		Strawberry tree	0.2		1.0
	Betula	Birch		1.0	
	Calluna vulgaris	Heather	0.2	1.0	0.2
	Castanea sativa	Sweet chestnut	1.1	-	_
	Cistus undiff.	Rockrose	-	1.2	0.5
	Cistus ladanifer	Gum rockrose	0.2	1.7	1.5
	Cistaceae undiff.	Rockrose family	-	0.7	1.0
	Corylus avellana	Hazel	1.1	0.2	0.7
	Ericaceae undiff.	Heath family	2.4	4.0	2.4
	Erica umbellata type	Dwarf Spanish heath	1.7	2.4	_
	Hedera helix	Ivy	_	_	0.2
	Helianthemum	Sunrose	0.4	_	0.2
	Lavandula stoechas type	Spanish lavender	_	1.0	0.5
	Pinus	Pine	1.1	_	_
	Quercus	Oak	0.2	_	0.2
	Salix	Willow	0.4	_	_
	Sambucus nigra type	Elderberry	0.4	_	_
Total arboreal pollen	samoucus nigra type	Electrocity	9.8	12.6	8.8
Herbaceous taxa	Aniagasa undiff	Carnot family	2.0	2.1	
Herbaceous taxa	Apiaceae undiff.	Carrot family			1,0
	Artemisia	Mugwort	1.1	_	- 0.0
	Asteraceae-Liguliflorae	Dandelion family	0.2		0.2
	Brassicaceae	Mustard family	2.8	0.7	1.5
	Campanulaceae	Bellflower family	_	0.2	0.2
	Caryophyllaceae	Pink family	0.2	0.2	0.2
	Centaurea cyanus	Cornflower	0.7	0.7	0.7
	Centaurea nigra type	Common knapweed	0.9	0.2	0.5
	Chenopodiaceae-Amaranthaceae	Goosefoot and amaranth family	0.2	0.5	_
	Cirsium	Thistle	_	0.5	_
	Convolvulus arvensis	Field bindweed	_	_	0.5
	Cyperaceae	Sedge family	_	0.2	0.5
	Echium	Viper's bugloss	0.7	0.7	0.5
	Fabaceae undiff.	Legume family	1.1	0.2	0.7
	Fallopia	Knotweed	0.2	_	_
	Lamiaceae undiff.	Mint family	_	0.2	0.7
	Lotus type	Trefoil	0.2	-	0.2
	Matricaria type	Chamomile	1.5	0.5	1.0
	· · · · · · · · · · · · · · · · · · ·				1.0
	Orlaya grandiflora	Large bullwort	0.2	0.5	-
	Plantago lancealata	Ribwort plantain	_	-	0.2
	Poaceae	Grass family	1.5	5.2	5.6
	Polygonum aviculare type	Knotgrass	0.2	0.2	_
	Potentilla type	Cinquefoil	0.2	_	_
	Ranunculus acris type	Meadow buttercup	0.2	_	0.2

(Continued)


Table 8 (Continued).

Category	Scientific name	Vernacular name	A	B-1	B-2
	Rosaceae undiff.	Rose family	0.9	0.2	
	Rumex acetosa type	Sorrel	_	0.7	1.5
	Senecio type	Groundsel	_	_	0.5
	Trifolium pratense type	Red clover	0.4	0.5	_
	Trifolium repens type	White clover	1.3	1.2	1.5
Total herbs			16.8	15.7	18.0
	Indet type 1		41.5	39.3	22.1
Mosses	Spaghnum	Peat moss	0.2	_	_
	Indetermined		3.3	2.1	1.9
Total pollen and spores			458	420	411

western Europe and must have been imported from the Mediterranean (Kiple and Ornelas 2000). The occurrence of both pollen and seeds (see above) from capers indicates that both the pickled flower buds and fruits were consumed at the site. Spinach originates from the Caucasus or Central Asia and was introduced as a cultivated plant to southern Europe during the 11th century, from where it subsequently spread northwards (Andersen and Torp 2011; Hallavant and Ruas 2014). Spinach pollen occurs in cesspits in the Low Countries from the 14th century onwards (Deforce et al 2019). One type of pollen grain that occurs with very high percentages in all three of the studied samples could not be identified (indeterminate type 1), (Fig 23:A, B). In view of these numbers, it likely originates from the consumption of (a food product based on) flowers or the flower buds of a specific plant.

The most remarkable feature is a high amount of taxa that have a Mediterranean distribution and which are not food plants. Strawberry tree (*Arbutus unedo*), rockrose (*Cistus* sp.) (Fig 23:C), gum rockrose (*Cistus ladanifer*) (Fig 23:D), dwarf Spanish heath (*Erica umbellata*), and Spanish lavender (*Lavandula stoechas*) all have a natural distribution largely restricted to the Mediterranean vegetation zone, with *C. ladanifer, E. umbellata* and *L. stoechas* specifically restricted to the western Mediterranean (Tutin et al 1964–1980). Additionally, viper's bugloss (*Echium*) and sunrose (*Helianthemum*) are typical Mediterranean plants, although their distribution spreads further into north-western and central Europe, where they occur sporadically. A similarly high number of (western) Mediterranean taxa have been found in a 15th-century cesspit from the palace of the dukes of Burgundy, also in Bruges (Deforce 2010). Some Mediterranean pollen types, mostly *Cistus* species, have also been found in other late- and early post-medieval cesspits in the Low Countries (De Groote et al 2004; Deforce 2006; 2013; 2017; van Haaster 2010; 2011; 2012).

There are different potential explanations for the presence of these Mediterranean pollen types in (post-)medieval cesspits in the Low Countries. Initially, it was believed to result from the use of ladanum (labdanum), an aromatic resin produced by several *Cistus* species, employed in the production of perfumes and in medicine (Deforce 2006). With an increasing number of Mediterranean taxa identified from these cesspits and not just members of the Cistaceae family, the consumption of honey originating from the Mediterranean seems a much more likely source for these pollen types (Deforce 2010; 2017). This is corroborated by the fact that all these taxa are typically pollinated by bees and are also important elements in the pollen assemblages of modern honeys from the

Pollen grains from sample B1: A. Indeterminate 1, polar view; B. Indeterminate 1, equatorial view; C. Cistus sp.; D. Cistus ladanifer. Scale bar = 10 µm. Photographs by Koen Deforce.

western Mediterranean (Gomez Ferreras and Sáenz de Rivas 1980; Bonvehi and Coll 1993; D'Albore 1998). Moreover, there is growing historical evidence for large-scale export of honey from the western Mediterranean to north-western Europe during the late-medieval period (Sapoznik et al 2023).

PARASITES

The results of parasite analysis of the latrine contents have been published elsewhere (Ledger et al 2024), but the relevant results are presented and contextualised more broadly here. Three sediment samples, one from layer [A] and two from layer [B], were analysed by microscopy for preserved parasite helminth eggs (Tab 9). The state of preservation of eggs within the cesspit samples was very good as indicated by nearly all *Ascaris* (roundworm) eggs (97%) having a mammillated coat, and by many *Trichuris* (whipworm) eggs (69%) retaining both polar plugs, and overall by the high concentration of eggs found.

The highest concentrations by type found in all subsamples were *Ascaris* and *Trichuris* (Fig 24:A). Eggs of *Ascaris* are not identified to species level due to an inability

Table 9
Concentration (eggs per gram) of parasite eggs recovered from layer [A], and two subsamples (1, 2), from layer [B].

Parasite	Vernacular name	A	B-1	B-2
Ascaris sp.	Roundworm	710	8,095	2,170
Dicrocoelium dendriticum	Lancet liver fluke	250	10	10
Echinostoma/Fasciola	Liver fluke	0	5	0
Taenia sp.	Beef/pork tapeworm	0	15	0
Trichuris sp.	Whipworm	6,190	345,000	9,560
Schistosoma mansoni	Intestinal schistosomiasis	0	5	0

Parasitic remains: A. Trichuris sp. (whipworm) egg (left) and Ascaris sp. egg (right); B. Dicrocoelium dendriticum egg; C. Fasciola/Echinostoma egg; D. Taenia sp. egg; E. Schistosoma mansoni egg. Scale bars all 20 μm. Photographs by Marissa Ledger.

to distinguish between Ascaris suum and Ascaris lumbricoides. Given the human context of the cesspit, the eggs most likely derive from the human-infecting species Ascaris lumbricoides. The average size of the Trichuris eggs found in the cesspit are $55.3 \,\mu\mathrm{m}$ long and $28.7 \,\mu\mathrm{m}$ wide. This fits within the overlapping size range for T. trichiura (human whipworm) and T. suis (pig whipworm), although the width is at the larger end of the range for typical human whipworm eggs. Again, given the human origin of the cesspit contents, these eggs are expected to be from T. trichiura. However, it is possible that there is a mix of human and pig whipworm eggs in the latrine, which may occur if offal from pigs also was discarded here. Whipworm and roundworm are common causes of parasite infection in Roman and medieval Europe, including Belgium (Deforce 2010; Rabinow et al 2023; Wang et al 2024).

Eggs from *Dicrocoelium dendriticum* (lancet liver fluke) were also recovered from all subsamples (Fig 24:B). *D. dendriticum* is a liver fluke that can cause true infection in humans but is also found in faeces as a result of false parasitism, resulting from the ingestion of liver of infected animals (Cabeza-Barrera et al 2011). Therefore, in most cases, the presence of these eggs in latrine contexts may indicate consumption of animal liver, rather than true infection. *D. dendriticum* has been found in other medieval latrines from Belgium (Rabinow et al 2023; Graff et al 2020).

The highest taxonomic diversity and concentration of parasite eggs was found in layer [B], subsample 1. A single trematode egg was found (Fig 24:C). Based on morphometric characteristics, this could be *Fasciola hepatica* or *Echinostoma* sp., both of which also previously have been found in latrines from medieval Belgium (Rabinow et al 2023; Graff et al 2020). It measures 123.0 μ m long (the operculum was not preserved) and is 67.3 μ m wide.

Additionally, this sample also contained *Taenia* sp. (tapeworm) and *Schistosoma mansoni* (blood fluke) (Fig 24:D–E). The two main species of *Taenia* that infect humans in Europe are *T. saginata* (beef tapeworm) and *T. solium* (pork tapeworm). It is not possible to identify *Taenia* eggs to the species level based on the egg morphology. Thus, the eggs in the latrine could represent infection through ingestion of raw or undercooked beef or pork.

While all the above-mentioned parasites have been found elsewhere in medieval Belgium and are likely representative of parasites endemic within the community, this is the first evidence for *S. mansoni* from an archaeological site in Belgium. In fact, the only archaeological evidence for *S. mansoni* in Europe is from 15th–16th century France (Bouchet et al 2002). *S. mansoni* is a fluke that causes intestinal schistosomiasis. *S. mansoni* is not endemic in north-western Europe thus the individual whose faeces were deposited in the cesspit must have been infected elsewhere. Today, the majority of *S. mansoni* infections occur in Africa, although infections also occur in the Middle East, South America and the Caribbean (Colley et al 2014). Current evidence suggests that *S. mansoni* was introduced into South America and the Caribbean in more recent human history through the Atlantic slave trade (Morgan et al 2005; Platt et al 2022). Given the known epidemiology of schistosomiasis, finding an *S. mansoni* egg provides evidence for long-distance travel, most likely between Africa and Bruges. However, it is also possible that the infected individual acquired the infection in the Arabian Peninsula.

DISCUSSION

PRACTISING CHEMISTRY IN LATE-MEDIEVAL FLANDERS

Several ceramic vessels and parts of a glass alembic provide information about the chemical production processes undertaken on the site, or in its immediate vicinity. While they represent rare finds for medieval Flanders, comparable artefacts have been found in Europe from the 13th century onwards (see Thomas and Moureau 2022 for a recent overview).

Although many archaeological discoveries of alchemical apparatus have been made in elite or religious contexts, some other findings and historical sources show that by the late-medieval period the practice of chemistry was not limited to a small circle of clerics, academics and court scientists. Instead, (al)chemical recipes were widespread among the educated urban populace and eagerly exchanged. To give but one telling example: a mid-15th-century notebook of a German merchant from Cologne based in Flanders contains several alchemical recipes for the processing of gold, silver and pearls, including one he had learned from a certain Jan Spyser, 'who wanted to be an alchemist' (ende wilde een alckemiste syn), and another one learned from a man named Pyrlin who, in turn, had heard it from the chamberlain of the Duke of Bourbon (CAC, Hs 262, fol 3r-5v).

As early as the 13th century, scholars such as Roger Bacon distinguished between so-called 'theoretical' or 'speculative alchemy' (alkimia speculativa), which concerns the generation of things from the elements, and 'practical alchemy' (alkimia operativa et practica), which deals with the manufacture of precious metals and pigments, and other items of chemical technology such as the counterfeiting of gems and the distillation of medicinal waters, such as rose water, alcohol, and quinta essentia, a liquid believed to extend life (Huizenga 1997; Newman 1997). In his handbook on painting (c 1400), Cennino Cennini explains that various pigments, such as ceruse, lead white and vermilion, are 'made by alchemy', evidently because of the close similarity between pigment manufacturing and the transmutation process, and also because of the symbolic value of colours (and colour changes) in the transmutation process. Rather than artists producing pigment themselves, Cennini suggested they should be collected 'at the druggists' (Bucklow 2016).

Indeed, artists did not routinely manufacture pigments, but instead would purchase them in powdered form from specialised merchants and spice dealers/apothecaries (Kirby et al 2010). According to the 'chosen law' of the Spice Hall of 1317, the Bruges spice dealers (many of whom were also active as apothecaries) not only sold a wide variety of exotic herbs and spices, but also metals such as mercury and tin, as well as precious minerals, mordants and dyestuffs such as brazilin, sulphur, orpiment, alum and lacquer (De Meyer 1842, 27), all of which were used in the production of (oil) paint. A later document, from 1470, also adds ceruse ('Spanish white'), vermilion, verdigris ('Spanish green'), white lead, the blue-purple colourant 'turnsole', the red colourant 'alquenecte' (alkanna tinctoria), as well as turpentine, arsenic, mastic, borax and galipot, to name but a few examples, to the list of products sold at the Spice Hall (Vanden Bussche 1874, 193-201). Interestingly, 15th-century records show that spice dealers also dealt in distilling equipment. In 1424, for example, a spice dealer/apothecary from Bruges sold two distilling glasses (twee glazen daermede men distuleert) to John of Bavaria, Count of Holland, just a few days prior to his death (NA, Archief van de graven van Holland, nr 1283, fol $27v^{\circ}-28r^{\circ}$, $68v^{\circ}$).

The easy availability of high-quality artists' materials and pigments in Bruges undoubtedly exerted a strong attraction on talented illuminators and painters, such as Jan van Eyck, Petrus Christus and Hans Memling, all of whom came to settle in this international trade centre in the course of the 15th century. So far, no painter's workshop has been traced near the excavation site (Verheyen 2023). Yet, we do know that in the late-medieval period the neighbourhood of the present-day *Spanjaardstraat* was home to a large concentration of spice dealers/apothecaries. In a source from 1424, for example, one of the spice dealers/apothecaries of the Burgundian Duke Philip the Good, Jacob van den Leene, is mentioned living on this street (CAB, OCMW, Begijnhof De Wijngaard, reg 1649 [oud nummer] F7), fol 26; see also Baveye Kouidrat 2015, 541–2). The house of Jan Voet, a Bruges-based spice dealer who supplied

apothicairies to Duke Philip the Bold in 1375, was located on the corner of the Spanjaardstraat and Jan van Eyckplein, but also had properties on the northern side of the nearby Genthof (EAB, Sint-Salvators, S291, fol 14v°; see also Baveye Kouidrat 2015, 565). In addition, spice dealers such as Jacob van den Vagheviere (died 1421) and Rogier van der Steghele (died 1430) had several properties close to the excavation site (CAB, OA, 208. Wezenregisters, Sint-Niklaas, boek 3, fol 130v–131r; CAB, OA, Carmers, boek 3, fol 95r). Many more examples could be cited. In fact, the aforementioned Jan van Hertsberghe, after whom Groot Hertsberghe may have been named, is probably the same as Jehan de Hertsberghe, li espesier ('the spice dealer') mentioned in a source from the 1320s (GSA, Rekenkamers, Delen en banden. Registers, n° 45925, fol 9v°). If this is indeed the case, the presence of spice dealers at the excavation site can be traced back at least to the early 14th century.

CONSUMPTION PRACTICES OF MERCANTILE COMMUNITIES

The location in the heart of Bruges' commercial district, the large array of imported goods and foodstuffs, and the presence of artisanal utensils all point in the direction of the cesspit contents reflecting multiple generations of traders. The oldest material likely relates to a rather well-to-do apothecary, involved in the import and export of multiple commodities, and the production of pigments and of distilled medicinal waters, perhaps stored in some of the vessels found in the assemblage. The complexity of cesspit excavations in combination with the lacunary historical sources do not allow us to identify with certainty whether this trader was local or of Spanish/Italian origin. In any case, Spanish merchants were certainly present from the 1480s onwards, first the wool trader Gómez de Soria and later, from 1494, Castilian members of the Spanish nation. It is uncertain whether the identified S mansoni parasite egg is attributable to one of the Mediterranean occupants at the site, since the indirect trade between Bruges and Africa was mainly mediated by Spanish, Italian or Portuguese merchants (Bonduel 2022), or perhaps to another individual whose origin was from an endemic area such as Africa and was living in or visiting the household (the first recorded mention of an African in Bruges dates to 1440: Viaene 1970). However, the presence of 16th-century objects allows us to attribute at least a part of the assemblage to the residents of the Spanish nation house with confidence.

The archaeology of medieval mercantile communities has, until now, studied mainly within the framework of the German Hanse. Hanseatic merchants in the Baltic are viewed as bound through common brick gable architecture and domestic goods, notably stoneware (Gaimster 2005; 2014). However, the idea of a Hanseatic 'cultural package' spreading across Europe has been nuanced through the study of its expression in various local case studies (eg Mehler 2009; Naum 2013; 2014). The result is a plea for a more contextual approach (Immonen 2007; Müller 2013), opening the way for a plurality of cultural interactions with and by Hanseatic merchants, in which objects play a mediatory role (Jervis 2017).

Only rarely have traces of Mediterranean merchants been uncovered in archaeological fieldwork in Northern Europe, so comparison is difficult. In Antwerp, a ceramic study of the 16th–17th-century Portuguese merchant family Ximenez revealed the presence of pottery circulating outside of regular trade networks—comparable to the possible Portuguese and Spanish jug and albarellos found at Bruges—and potentially acquired as

a gift or acquired directly from abroad (Poulain et al 2017). Internationally, most notable are the excavations at Bucklersbury and Poultry (London), where several shops were unearthed in an area closely associated with Italian merchants working as druggists or apothecaries in the trade of spices and fine textiles (Burch et al 2011, 98, 116, 231–3). At this site in London, however, no finds relate directly to this Mediterranean mercantile presence. The nationality or cultural identity of merchants or occupants is thus not necessarily reflected in the range of tablewares used in their foreign homes (Allan 1995; Jeffries 2001; Gutiérrez 2012). The many imports and particular forms in the Bruges' assemblage studied here should not therefore be interpreted as the exclusive constituents of a uniform Spanish/Italian 'cultural package'. The occurrence of Mediterranean honey, rice and olives at various high-status/mercantile sites serves as a case in point. Both locals and non-locals may thus have used these goods to navigate everyday life and trade in the multicultural city that was medieval Bruges.

The cosmopolitan tastes of local or foreign merchants in Bruges demonstrated here recall earlier work by Mack (2002) on Renaissance Italy, in which the author observes a rising demand for luxurious, Oriental-style household furnishings. For example, even with the declining quality of Syrian glass at the end of the 14th century, it was still widely imported to Italy. And locally made maiolica continued to draw inspiration from techniques, colours and motifs used in Islamic lands (Mack 2002, 95-123). The well-established shipping network between Bruges and the Mediterranean meant that this 'community of taste' (Mack 2002, 171) could be continued away from home or newly adopted without much effort. Although previously the importance of this cosmopolitan demand for luxury goods in late-medieval Bruges has been questioned because of limited indications for such imports in historical sources (Stabel 2011), the archaeological data from this cesspit seem to suggest that, at least for merchants in Bruges' international quarter, such goods were within reach and an intrinsic part of their lives, either as luxuries bought at the Bruges market or as ordinary utensils brought from the homeland. The majority of locally crafted goods, also in top layer [A], more likely reflective of Spanish occupation at the site, suggests however that even for these Mediterranean merchants, this 'community of taste' was not simply transplanted, but rather adapted through interaction and exchange with the local population and its material culture.

CONCLUSION

This interdisciplinary re-evaluation of an old rescue excavation has allowed for new perspectives on the supply side of painting, illumination and alchemy, and given a glimpse of the material lives of those involved in the production chain of pigments and medicinal waters, among other things unrecognised during excavation. The results relating to the probable presence of a 15th-century apothecary at, or in the vicinity of, the site tie in neatly with the historical records of Bruges as one of the—if not the most important—centres of trade for spices and dyes in northern Europe during the 14th and 15th centuries. As such, this contextualised case study contributes to the 'colourful mosaic' of alchemical practices in medieval Europe (Martinón-Torres 2012, 23), providing further insight into its diversity and modes of functioning. Moreover, the finds from the cesspit further diversify our understanding of the material manifestation of mercantile communities outside of contexts directly relating to the Hanseatic League. While the evidence seems to hint at a rather cosmopolitan taste in this international quarter, consumption practices of goods and foods remain firmly rooted in local provisioning. As

few comparable assemblages are currently available in Europe, we hope that this research can serve as a reference for future studies on the medieval archaeology of merchants.

ACKNOWLEDGEMENTS

This research is part of the Ghent University Concerted Research Action, High Tide, Low Tide: The Late-Medieval Harbour of Bruges as a Maritime-Cultural Landscape, and has benefited from a research stay at the Dutch University Institute for Art History in Florence, financed by the Faculty of Arts and Philosophy's Research Fund of Ghent University. Particular thanks go to Philippe Probst and Heiko Steuer for providing information on the pewter objects in this assemblage, to Griet Lambrecht, Sylvia Mazereel and Johan Van Laecke for their help with some of the maps and drawings, and to Breghtje Dik for her precious feedback on the archival and iconographical sources used in this paper. We would like to dedicate this paper to Bieke Hillewaert, a passionate archaeologist who left us all too soon.

This article has been published with the support of the University Foundation of Belgium.

DISCLOSURE STATEMENT

No potential conflict of interest was reported by the author(s).

BIBLIOGRAPHY

- Allan, J 1995, 'Iberian pottery imported into South-West England, c 1250–1600', in C M Gerrard, A Gutiérrez and A G Vince, (eds), Spanish Medieval Ceramics in Spain and the British Isles, British Archaeological Reports, International Series 610, Oxford: Tempus reparatum, 299–314.
- Andersen, S B and Torp, A M 2011, 'Spinacia', in C Kole (ed), Wild Crop Relatives: Genomic and Breeding Resources Vegetables, Berlin: Springer, 273–6.
- Assië, C 2022, Brugge-Jakobinessenstraat: Archeobotanisch onderzoek van enkele laatmiddeleeuwse en vroegnieuwetijdse beerputten, BIAXiaal **1542**, Zaandam: BIAX.
- Baveye Kouidrat, L 2015, Exercer la médecine en milieu curial au XVème siècle: L'exemple de la cour de Bourgogne, vol **3** (unpublished PhD thesis, Université de Lille 3—Charles de Gaulle).
- Beeckman, D and Van Hecke, C 2017, In de Cop op de Merckt: Archeologisch onderzoek van een huishouden uit 16de-eeuws Dendermonde, Ghent: Provincie Oost-Vlaanderen.
- Benoit, P and Matteoni, O 2004, 'La pêche en eau douce au Moyen-Âge et à l'époque Moderne: la rivière et l'étang', in P Benoit and O Matteoni (eds), Pêche et pisciculture en eau douce: la rivière et l'étang au Moyen Age et à l'époque moderne. Actes des Ires rencontres internationales de Liessies, Lille: Conseil Général du Nord, 4–5.

- Beug, H-J 2004, Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete, München: Verlag Dr Friedrich Pfeil.
- Blake, H 1999, 'De nomine Jhesu: An Italian export ware and the origin of Renaissance maiolica pottery-making in the Low Countries', in Gaimster, 23–56.
- Blake, H and Hughes, M J 2003, 'The introduction of tin-glazed ceramics in North-Western Europe: new data from the British museum neutron activation analysis programme', in C Bakirtzis (ed), VIIe Congrès International sur la Céramique Médiévale en Méditerranée (Thessaloniki, 11–16 Octobre 1999), Athens: Éditions de la Caisse des Recettes Archéologiques, 447–54.
- Bonduel, E 2022, 'Late medieval Bruges as an international market for eastern and African goods', in *Otobong Nkanga: Underneath the Shade We Lay Grounded*, Veurne: Hannibal, 130–7.
- Bonvehi, J S and Coll, F V 1993, 'Physico-chemical properties, composition and pollen spectrum of french lavender (*Lavandula* stoechas L.) honey produced in Spain', *Zeitschrift für Lebensmittel-Untersuchung und Forschung* 196, 511–7.
- Bouchet, F, Harter, S, Paicheler, J C et al, 2002, 'First recovery of Schistosoma mansoni eggs from a latrine in Europe (15–16th centuries)', Journal of Parasitology 88, 404–5.
- Brosh, N 2005, 'Islamic glass finds of the thirteenth to fifteenth century from Jerusalem—

- Preliminary report, in *Annales du 16e Congrès de l'Association Internationale pour l'Histoire du Verre*, (London, 7–13 September 2003), Nottingham: AIHV, 186–90.
- Brown, A and Dumolyn, J 2018, Medieval Bruges, c 850–1550, Cambridge: Cambridge University Press
- Bucklow, S 2016, 'Alchemy and colour', in S Panayotova (ed), Colour. The Art and Science of Illuminated Manuscripts, Turnhout: Brepols, 108–17.
- Burch, M, Treveil, P and Keene, D 2011, The Development of Early Medieval and Later Poultry and Cheapside: Excavations at 1 Poultry and Vicinity, City of London, MOLA Monograph 38, London: Museum of London Archaeology.
- Cabeza-Barrera, I, Cabezas-Fernández, T, Salas Coronas, J. Vázquez Villegas, J and Cobo, F, 2011, 'Dicrocoelium dendriticum: an emerging spurious infection in a geographic area with a high level of immigration', Annals of Tropical Medicine and Parasitology 105, 403–6.
- Cardon, D 2007, Natural Dyes. Sources, Tradition, Technology and Science, London: Archetype.
- Childs, W R 1995, 'Documentary evidence for the import of Spanish pottery to England in the later Middle Ages (thirteenth to early sixteenth centuries)', in C M Gerrard, A Gutiérrez and A G Vince (eds), Spanish Medieval Ceramics in Spain and the British Isles, British Archaeological Reports, International Series 610, Oxford: BAR Publishing, 25–31.
- Colenbrander, S 2010, Zolang de weefkunst bloeit: Zijdeweverijen in Amsterdam en Haarlem, 1585–1750 (unpublished PhD thesis, University of Amsterdam).
- Coll Conesa, J, De Groote, K, De Clercq, W et al, 2025, 'New tracks on old paths: New light on imported medieval Spanish ceramics in Flanders', in W De Clercq et al (eds), Ad Brudgias Portum: Bruges' Medieval Port System as a Maritime Cultural Landscape, Turnhout: Brepols (forthcoming).
- Collet, E 1992, Specerijkelijk: De specerijenroutes, Brussels: ASLK.
- Colley, D G, Bustinduy, A L, Secor, W E et al, 2014, 'Human schistosomiasis', *Lancet* **383**, 2253–64.
- Comis, S Y 2017, Zeventiende- en achttiende-eeuwse kleding van walvisvaarders opgegraven op Spitsbergen, Zwolle: SPA uitgevers.
- Coremans, L 2020, Eindverslag archeologische opgravingen Mechelen—Zakstraat, Rapporten All-Archeo bvba 663, Bornem: All-Archeo.
- Cultuurbibliotheek nd, Prosopografie de Doppere File SA-SYM 536-449, sl.

- D'Albore, G R 1998, Mediterranean Melissopalynology, Perugia: Institute of Agricultural Entomology.
- De Cupere, B, Speleers, L, Mitchell, P D et al, 2022, 'A multidisciplinary analysis of cesspits from late medieval and post-medieval Brussels, Belgium: diet and health in the fourteenth to seventeenth centuries', International Journal of Historical Archaeology 26: 3, 531–72.
- Deforce, K 2006, 'The historical use of ladanum. Palynological evidence from 15th and 16th century cesspits in northern Belgium', Veget Hist Archaeobot 15:2, 145–8.
- Deforce, K 2010, 'Pollen analysis of 15th century cesspits from the palace of the dukes of Burgundy in Bruges (Belgium): Evidence for the use of honey from the Western Mediterranean', Journal of Archaeological Science 37:2, 337–42.
- Deforce, K 2013, 'Pollen uit de vullingen van de beerputten', in M Pieters (ed), Het archeologisch onderzoek in Raversijde (Oostende) in de periode 1992–2005, Relicta Monografieën 8, Brussels: Onroerend Erfgoed, 326–31.
- Deforce, K 2017, 'The interpretation of pollen assemblages from medieval and post-medieval cesspits: New results from northern Belgium', *Quat Int* **460**, 124–34.
- Deforce, K, Brinkkemper, O, van Haaster, H et al, 2019, 'Small things can make a big difference. A comparison of pollen and macrobotanical records of some food plants from medieval and post-medieval cesspits in the Netherlands and N-Belgium', Veget Hist Archaeobot 28, 433–45.
- De Groote, K 2012, 'To honour Mary? Provenance, distribution and symbolic use of Mediterranean tin-glazed pottery in late medieval inland Flanders', *Medieval and Modern Matters* **3**, 1–20.
- De Groote, K, Moens, J and Cooremans, B 1999, 'Middeleeuwse sporen op de Grote Markt en het fabrieksterrein 't Haantje te Aalst (Oost-Vlaanderen). Een kleine bijdrage tot de ontwikkelingsgeschiedenis van de stad', Archeologie in Vlaanderen 5, 111–30.
- De Groote, K, Moens, J, Caluwé, D et al, 2004, 'De Valcke, de Slotele en de Lelye: Burgerwoningen op de Grote Markt te Aalst (prov. Oost-Vlaanderen): Onderzoek naar de bewoners, analyse van een vroeg-16de eeuwse beerputvulling en de evolutie tot stadhuis', Archeologie in Vlaanderen 8, 281–408.
- De Groote, K, Moens, J, Caluwé, D et al, 2009, 'Op zoek naar de oudste middeleeuwse bewoning

- aan de Grote Markt te Aalst (prov. Oost-Vlaanderen). Het onderzoek van afval- en beerkuilen uit de 12de tot 14de eeuw' *Relicta* **4**, 135–203. eeuw
- De Groote, K and Moens, J (eds) 2018, Archeologie en geschiedenis van een middeleeuwse woonwijk onder de Hopmarkt te Aalst, Relicta Monografieën 16, Brussels: Agentschap Onroerend Erfgoed.
- De Groote, K and Verhaeghe, F 2016, 'La majolique du Bas Moyen Âge aux Temps Modernes en Flandre', in F Ravoire and A Horry (eds), Faïences et majoliques du XVe au XVIIe siècle en France et en Belgique. Pour un bilan des connaissances archéologiques, Dijon: Éditions Universitaires de Dijon, 181–95.
- De Meester, T 2018, 'De Brugse hosteliers en hun herbergen in de 14de–15de eeuw', Brugs Ommeland 58:2, 3–25.
- De Meester, T, Dumolyn, J, Jones, S F et al, 2020, 'Meester Jans huus van Eicke: het huis, het atelier en de omgeving van Jan van Eyck in Brugge: Nieuwe archiefgegevens', in M Martens et al (eds), Van Eyck: een optische revolutie, Veurne: Hannibal, 126–37.
- De Meyer, I J 1842, Origine des apothicaires de Bruges, Bruges: Imprimerie de Felix de Pachtere.
- De Smaele, B, Pieters, H, Siemons, J et al, in preparation, Geraardsbergen-Brandstraat, Onderzoeksrapport Hembyse Archeologie **40**, Ghent: Hembyse.
- De Vos, D 1999, Rogier van der Weyden: The Complete Works, Antwerp: Mercatorfonds.
- De Witte, H and Hillewaert, B 1993, 'Archeologisch jaarrapport 1991–1992', *Jaarboek.* Stad Brugge Stedelijke Musea **1991–92**, 71–91.
- De Witte, H and Hillewaert, B 1997, 'Archeologisch jaarrapport 1993–1994', *Jaarboek.* Stad Brugge Stedelijke Musea **1995–96**, 72–90.
- Du Mortier, B 1991, 'Tweedehands kleding in de zeventiende eeuw', Textielhistorische Bijdragen 31—Sociale aspecten van kleding, 39–59.
- Eastaugh, N, Walsh, V, Chaplin, T et al, 2004, The Pigment Compendium: A Dictionary of Historical Pigments, Oxford: Elsevier.
- Edwards, H G M, Wilson, A S, Nik Hassan, N F et al, 2007, 'Raman spectroscopic analysis of human remains from a seventh century cist burial on Anglesey, UK', *Analytical and Bioanalytical Chemistry* **387**, 821–8.
- Ervynck, A, Van Neer, W and Van der Plaetsen, P 1994, 'Dierlijke resten', in A Ervynck (ed), 'De Burcht' te Londerzeel. Bewoningsgeschiedenis van een motte en een bakstenen kasteel, Archeologie in Vlaanderen Monografie 1, Brussels: Instituut voor het Archeologisch Patrimonium, 99–170.

- Ervynck, A, Cooremans, B and Van Neer, W 1999, 'De voedselvoorziening in de Sint-Salvatorsabdij te Ename (Oudenaarde, prov. Oost-Vlaanderen): 4. Een beer- en afvalput uit het gastenkwartier (1350–1450 AD)', Archeologie in Vlaanderen 5, 303–15.
- Ervynck, A, Lentacker, A, Wouters, W et al, 2023, Vis, havik en konijn. Een laatmiddeleeuws ensemble van dierenresten uit een beerput langs de Spanjaardstraat in Brugge, Onderzoeksrapporten Agentschap Onroerend Erfgoed 302, Brussels: agentschap Onroerend Erfgoed. Available from: oar.onroerenderfgoed.be/publicaties/OAOE/302/OAOE302-001.pdf.
- Fitzhugh, E W 1986, 'Red lead and minium', in R L Feller (ed), Artists' Pigments: A Handbook of Their History and Characteristics, vol 1, Washington: National Gallery of Art, 109–39.
- Gaimster, D (ed) 1999, Maiolica in the North. The Archaeology of Tin-Glazed Earthenware in North-West Europe c. 1500-1600, London: The Trustees of the British Museum.
- Gaimster, D 2005, 'A parallel history: The archaeology of Hanseatic urban culture in the Baltic c. 1200–1600', World Archaeology 37, 408–23.
- Gaimster, D 2014, 'The Hanseatic cultural signature: Exploring globalization on the microscale in late medieval Northern Europe', European Journal of Archaeology 17, 60–81.
- Garcia-Moreno, R and Thomas, N 2008, 'Cinnabar or vermilion?', in S Kroustallis et al (eds), Art Technology: Source and Methods, London: Archetype, 141–3.
- Gettens, R J, Kühn, H and Chase, W T 1993a, 'Lead white', in Roy, 67–81.
- Gettens, R J, Feller, R L and Chase, W T 1993b, 'Vermilion and cinnabar', in Roy, 159–82.
- Gilliodts-Van Severen, L 1894, Les registres des "Zestendeelen" ou le cadastre de la ville de Bruges de l'année 1580, Bruges: Imprimerie de Louis de Plancke.
- Gómez Ferreras, C and Sáenz de Rivas, C 1980, 'Análisis polínico de mieles de Cáceres (España)', Anales del Jardín Botánico de Madrid, 36 191–201.
- Goubitz, O, van Driel-Murray, C and Groenmanvan Waateringe, W 2001, Stepping through Time. Archaeological Footwear from Prehistoric Times until 1800, Zwolle: SPA uitgevers.
- Graff, A, Bennion-Pedley, E, Jones, A K et al, 2020, 'A comparative study of parasites in three latrines from medieval and Renaissance Brussels, Belgium (14th–17th centuries)', *Parasitology* **147**, 1443–51.
- Groenman-van Waateringe, W and Velt, L M 1975, 'Schuhmode im späten Mittelalter.

- Funde und Abbildungen', Zeitschrift für Archäologie des Mittelalters 3, 95–119.
- Gutiérrez, A 2012, 'Of sundry colours and moulds: imports of early modern pottery along the Atlantic seaboard', in A Teixeira and J A Bettencourt (eds), Old and New Worlds: Studies on Early Modern Archaeology, Lisbon: CHAM, 37–50.
- Gutiérrez, A 2021, 'Spanish and Portuguese ceramics found at Exeter', in S Rippon and N Holbrook (eds), Studies in the Roman and Medieval Archaeology of Exeter: Exeter, A Place in Time, vol 2, Oxford: Oxbow Books, 515–37.
- Haak, B 2018, 'Trippen in Lübeck, Herstellung, Funktion und Mode einer mittelalterlichen Schuhform', in M Gläser (ed), Funde aus der Lübecker Altstadt II. Trippen, Leder, Trachtzubehör, Glas und Keramik, Herausgegeben von Manfred Schneider, vol 33, Rahden: VML, 9–92.
- Hallavant, C and Ruas, M P 2014, 'The first archaeobotanical evidence of *Spinacia oleracea* L. (spinach) in late 12th-mid-13th century AD France', *Vegetation History and Archaeobotany* 23, 153–65.
- Helwig, K 2007, 'Iron oxide pigments', in B H Berrie (ed), Artists' Pigments: A Handbook of Their History and Characteristics, vol 4, Washington/ London: National Gallery of Art/Archetype, 39–109.
- Henkes, H 1994, Glas zonder glans: vijf eeuwen gebruiksglas uit de bodem van de Lage Landen 1300– 1800, Rotterdam: Coördinatie Commissie van advies inzake archeologisch onderzoek binnen het ressort Rotterdam.
- Hillewaert, B 1993, 'Imported pottery in the Bruges area', *Medieval Ceramics* 17, 61–7.
- Hillewaert, B and Van Besien, E (eds) 2007, *Het Prinsenhof in Brugge*, Brugge: Van de Wiele. [The Prinsenhof in Bruges].
- Hughes, M and Gaimster, D 1999, 'Neutron activation analyses on maiolica from London, Norwich, the Low Countries and Italy', in Gaimster, 57–89.
- Huizenga, E 1997, Een nuttelike practijke van cirurgien, Hilversum: Verloren.
- Hurst, J G 2002, 'Distribution and consumption of majolica in Britain', in J Veeckman (ed), Majolica and Glass from Italy to Antwerp and Beyond. The Transfer of Technology in the 16th and Early 17th Century, Antwerp: Stad Antwerpen, afdeling archeologie, 313–31.
- Immonen, V 2007, 'Defining a culture: The meaning of Hanseatic in medieval Turku', Antiquity 81, 720–32.
- Jeffries, N 2001, 'Historically visible but archaeologically invisible? The Huguenots in 17th-century Spitalfields', Medieval Ceramics 25, 54–64.

- Jervis, B 2017, 'Ceramics and coastal communities in medieval (twelfth–fourteenth century) Europe: Negotiating identity in England's channel ports', European Journal of Archaeology 20:1, 148–67.
- Kemperdick, J and Sander, S (eds) 2009, The Master of Flemalle and Rogier van der Weyden, Berlin: Gemäldegalerie Staatliche Museen zu Berlin.
- Kiple, K F and Ornelas, K C (eds) 2000, *The Cambridge World History of Food*, vol **2**, Cambridge: Cambridge University Press.
- Kirby, J, Nash, S and Cannon, J (eds) 2010, Trade in Artists' Materials. Markets and Commerce in Europe to 1700, London: Archetype.
- Lagas 2000, Kwikrestanten in een afvalput in Brugge, Zoetemeer: Advies- en Onderzoeksbureau Lagas (unpublished report).
- Lagercrantz, O 1924, 'Les recettes alchimiques du codex Holkhamicus', in D W Singer et al (eds), Catalogue des manuscrits alchimiques grecs, vol 3, Les manuscrits des îles britanniques, Brussels: Union Académique Internationale, 29–81.
- Ledger, M L, Micarelli, I, Ward, D et al, 2021, 'Gastrointestinal infection in Italy during the Roman Imperial and Longobard Periods: A paleoparasitological analysis of sediment from skeletal remains and sewer drains', *International* Journal of Paleopathology 33, 61–71.
- Ledger, M L, Poulain, M and Deforce, K 2024, 'Paleoparasitological analysis of a 15th–16th c. CE latrine from the merchant quarter of Bruges, Belgium: Evidence for local and exotic parasite infections', *Parasitology* **151**:11, 1281–9.
- Mack, R E 2002, Bazaar to Piazza: Islamic Trade and Italian Art, 1300-1600, Berkeley/Los Angeles/London: University of California Press
- Marchini, M, Gandolfi, M, Maini, L et al, 2022, 'Exploring the ancient chemistry of mercury', Proc Natl Acad Sci U S A 119:24, e2123171119.
- Marechal, J 1953, 'La colonie espagnole de Bruges du XIVe au XVIe siècle', *Revue du Nord* **35**:137, 5–40.
- Martinón-Torres, M 2012, 'Inside Solomon's house: An archaeological study of the Old Ashmolean chymical laboratory in Oxford', Ambix 59:1, 22–48.
- Mehler, N 2009, 'The perception and interpretation of Hanseatic material culture in the North Atlantic: Problems and suggestions', Journal of the North Atlantic Special Volume 1, 89–108.
- Merrifield, M P 1999, Original Treatises on the Arts of Painting, New York: Dover.

- Miguel, C, Pinto, J V, Clarke, M et al, 2014, 'The alchemy of red mercury sulphide: The production of vermilion for medieval art', *Dyes Pigm* **102**, 210–7.
- Moens, J, Poulain, M, Huyghe, J, Hillewaert, B and Ervynck A 2023, Een bijzonder laatmiddeleeuws ensemble van leerresten uit een beerput langs de Spanjaardstraat in Brugge, Onderzoeksrapporten Agentschap Onroerend Erfgoed 296, Brussels: agentschap Onroerend Erfgoed. Available from: https://doi.org/10.55465/ILCN8960
- Moore, P D, Webb, J A and Collinson, M E 1991, *Pollen Analysis*, 2nd ed, Oxford: Blackwell Science.
- Moorhouse, S, Greenaway, F, Moore, C C et al, 1972, 'Medieval distilling-apparatus of glass and pottery', *Medieval Archaeology* **16**:1, 79–88.
- Morgan, J A T, Dejong, R J, Adeoye, G O et al, 2005, 'Origin and diversification of the human parasite Schistosoma mansoni', Molecular Ecology 14, 3889–902.
- Moureau, S and Thomas, N 2015, 'L'aludel: savoir et savoir-faire transmis du monde arabe à l'Occident médiéval?, in C Richarté et al (eds), *Héritages arabo-islamiques dans l'Europe méditerranéenne*, Paris: La Découverte, 239–52.
- Müller, U 2013, 'Hanse und Archäologie—Vom Konstrukt zur Vielfalt kultureller Praxen', in A Oliver (ed), Hansegeschichte als Regionalgeschichte. Beiträge einer internationalen und interdisziplinären Winterschule in Greifswald vom 20. bis 24. Februar 2012, Frankfurt: Peter Lang, 133–76.
- Murray, J M 2005, Bruges, Cradle of Capitalism, 1280–1390, Cambridge: Cambridge University Press.
- Naum, M 2013, 'Premodern translocals: German merchant diaspora between Kalmar and northern German towns (1250–1500)', International Journal of Historical Archaeology 17, 376–400.
- Naum, M 2014, 'Multi-ethnicity and material exchanges in late medieval Tallinn', European Journal of Archaeology 17:4, 656–77.
- Newman, W 1997, 'An overview of Roger Bacon's alchemy', in J Hackett (ed), Roger Bacon and the Sciences: Commemorative Essays, Studien und Texte zur Geistesgeschichte des Mittelalters, 57, Leiden: EJ Brill, 317–36.
- Pezzella, S 1976, *Il trattato di Antonio da Pisa sulla fabbricazione delle vetrate artistiche*, Perugia: Umbria Editrice.
- Pieters, M, Bouchet, F, Cooremans, B et al, 1999, 'Granaatappels, een zeeëngel en rugstreeppadden. Een greep uit de inhoud van een bakstenen beerput uit het 15^e eeuwse Raversijde

- (Oostende, prov. West-Vlaanderen)', Archeologie in Vlaanderen 5. 193–224.
- Pinder-Wilson, R H 2012, 'The Islamic lands and China', in H Tait (ed), 5000 Years of Glass, London: The British Museum Press, 112–44.
- Platt, R N, Le Clec'h, W, Chevalier, F D et al, 2022, 'Genomic analysis of a parasite invasion: Colonization of the Americas by the blood fluke Schistosoma mansoni', *Molecular Ecology* **31**, 2242–63.
- Poulain, M, Van Vaerenbergh, J and De Clercq, W 2017, 'A Portuguese lifestyle in the Flemish countryside: Ceramics of the Ximenez family (1595-c. 1700)', Post-Medieval Archaeology 51:2, 274–308.
- Punt, W et al 1976, -2003., The Northwest European Pollen Flora (NEPF), vols **1-8**, Rotterdam: Elsevier.
- Rabinow, S, Deforce, K and Mitchell, P D 2023, 'Continuity in intestinal parasite infection in Aalst (Belgium) from the medieval to the early modern period (12th–17th centuries)', *International Journal of Paleopathology* **41**, 43–9.
- Reimer, P J, Austin, W E N, Bard, E et al, 2020, 'The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kbp)', Radiocarbon 62, 725–57.
- Remoorter, O 2022, Eindverslag opgraving Brugge—Sint-Maartensplein, BAAC Vlaanderen Rapport **2073**, Ghent: BAAC Vlaanderen.
- Roy, A (ed) 1993, Artists' Pigments: A Handbook of Their History and Characteristics, vol 2, Washington: National Gallery of Art.
- Ruscelli, G 1559, Les secrets du Seigneurs Alexis Piemontois, divisez en six livres: Ausquels avons adjoint autres secrets de nouveau, adjoutez par iceluy, qu'aucuns ont appellé, le second volume: & les receptes de divers auteurs toutes bien experimentées, & approuvées, Antwerp: C. Plantin.
- Sanderus, A 1641, *Flandria Illustrata*, vol **1**, Cologne: sumptibus Cornelii ab Egmondt et sociorum.
- Sanyova, J, Van der Snickt, G, Mederos-Henry, F et al, 2021, 'The challenges of a complex stratigraphy from a chemical point of view', in G Steyaert (eds), The Ghent Altarpiece. Research and Conservation of the Interior: The Lower Register, Turnhout: Brepols, 111–45.
- Sapoznik, A, Sales I Favà, L and Whelan, M 2023, 'Trade, taste and ecology: Honey in late medieval Europe', Journal of Medieval History 49, 252–74.
- Schoenmakers, S 2012–13, De Brugse vleeshouwers in de late middeleeuwen: Een

- prosopografische studie (unpublished MA thesis, Ghent University).
- Smeets, M and Vander Ginst, V 2012, Het archeologisch onderzoek op het Fochplein te Leuven, Archeo-rapport 94, Kessel-Lo: Studiebureau Archeologie.
- Speleers, L 2020, Zaden- en vruchtenanalyse van twee 15de-eeuwse contexten op de site Mechelen—Zakstraat, rapport 2020-10, Brussels: Koninklijk Belgisch Instituut voor Natuurwetenschappen.
- Stabel, P 2011, 'Le goût pour l'Orient': Demande cosmopolite et objets de luxe à Bruges à la fin du Moyen Âge', *Histoire Urbaine* **30**:1, 21–39.
- Stols-Witlockx, M 2012, 'Grounds, 1400–1900', in J H Stoner and R Rushfield (eds), The Conservation of Easel Paintings, London/New York: Routledge, 161–88.
- Swann, J 2001, History of Footwear in Norway, Sweden and Finland. Prehistory to 1950, Stockholm: Kungl Vitterhets, historie och antikvitets akademien.
- Tait, H 2012, 'Europe from the Middle Ages to the Industrial Revolution', in H Tait (ed), 5000 Years of Glass, London: The British Museum Press, 145–87.
- Terryn, B 2021, Eindverslag opgraving Antwerpen-Sint-Paulusstraat, Rapport 1763, Bassevelde: BAAC.
- Teunissen, M and Stolk, M 2024, Textiel uit Hollandse Bodem. Archeologische vondsten uit de 17de en 18de eeuw, Oegstgeest: Beleef het Verleden.
- Thomas, N 2009, 'L'alambic dans la cuisine', in F Ravoire and A Dietrich (eds), La cuisine et la table dans la France de la fin du Moyen Âge: contenus et contenants du XIVe au XVIe siècle, Turnhout: Brepols, 35–50.
- Thomas, N 2013, 'De la recette à la pratique: l'exemple du lutum sapientiae des alchimistes', in R Córdoba de la Llave (ed), Craft Treatises and Handbooks. The Dissemination of Technical Knowledge in the Middle Ages, Turnhout: Brepols, 249–70.
- Thomas, N and Rodrigues, N 2017, 'Le verre dans la médecine et dans le laboratoire alchimique', in S Lagabrielle (ed), *Le verre: Un Moyen Âge inventif*, Paris: Réunion des musées nationaux, 196–9.
- Thomas, N and Moureau, S 2022, 'Laboratories and technology: Alchemical equipment in the Middle Ages', in C Burnett and S Moureau (eds), A Cultural History of Chemistry in the Middle Ages, vol 2, London: Bloomsbury Academic, 49–70.
- Tutin, T G, Heywood, V H, Burges, N A et al 1964–1980, Flora Europaea, vols **1–5**, Cambridge: Cambridge University Press.

- Tyson, R 2000, Medieval Glass Vessels Found in England c AD 1200–1500, Council for British Archaeology Research Reports 121, York: Council for British Archaeology.
- Tyson, R 2013, 'Imported glass', in K Pitt et al (eds), Medieval to Early Post-Medieval Tenements and Middle Eastern Imports: Excavations at Plantation Place, City of London, 1997–2003, London: Museum of London Archaeology, 71–8.
- Van den Abeele, 1994, La fauconnerie au Moyen Âge. Connaissance, affaitage et médecine des oiseaux de chasse d'après les traités latins, Paris: Collection Sapience.
- Vanden Berghe, I, Gleba, M and Mannering, U 2009, 'Towards the identification of dyestuffs in early Iron Age Scandinavian peat bog textiles', Journal of Archaeological Science 36, 1910–21.
- Vanden Bussche, É 1874, Flandre et Portugal.

 Mémoires sur les relations qui existèrent autrefois entre
 les Flamands de Flandre—particulièrement ceux de
 Bruges—et les Portugais, Bruges: Imprimerie de
 C. De Moor.
- Vandewalle, A 2008, 'De vreemde naties in Brugge', in A Vandewalle (ed), Een privilege voor iedereen. Verzamelde studies van dr. André Vandewalle over Brugse geschiedenis, archief en heraldiek, Antwerp: VVBAD, 237–52.
- van der Meer, W 2019, Onderzoek van macroresten en pollen in een beerput te Mechelen-Scheerstraat/Frederik de Merodestraat, BIAXiaal **1173**, Zaandam: BIAX.
- van der Meer, W 2022, De voedingsgewoonten van de bewoners van de Tichelrij te Mechelen in de 13e-16e eeuw op basis van onderzoek van de plantaardige resten in hun beerputten, BIAXiaal **1522**, Zaandam: BIAX.
- van Haaster, H 2008, Archeobotanica uit 's-Hertogenbosch. Milieuomstandigheden, bewoningsgeschiedenis en economische ontwikkelingen in en rond een (post)middeleeuwse stad, Groningen Archaeological Studies **6**, Eelde: Barkhuis.
- van Haaster, H 2010, Voedingsgewoonten en menselijke activiteit op het terrein van het Sint Ursulaklooster in Delft, BIAXiaal 463, Zaandam: BIAX.
- van Haaster, H 2011, Archeobotanisch onderzoek in het plangebied Beneden Molendijk in Oud-Beijerland (16e-19e eeuw), BIAXiaal 530, Zaandam: BIAX.
- van Haaster, H 2012, Een archeobotanisch kijkje in de keuken van het paleis Huys ter Nieuburch in Rijswijk (1635–1786), BIAXiaal 519, Zaandam: BIAXconsult.

Valdés, B, Díez, M J and Fernández, I 1987, Atlas Polínico de Andalucía Occidental, Cadiz: Universidad de Sevilla Excma.

Verheven, I 2023, 'Schilders en hun huizen in het vijftiende-eeuwse Brugge: Atelierlocaties ten tijde van Jan van Eyck en Pieter Cristus (1425-1475)', Handelingen van het Genootschap voor Geschiedenis 160:1, 55-83.

Viaene, A 1970, 'Kleine verscheidenheden', Biekorf 71, 250-4.

Vince, A 2013, 'Petrographic and chemical analysis of 'mercury jars' from Raversijde', in M Pieters et al (eds), Het archeologisch onderzoek in Raversijde (Oostende) in de periode 1992-2005: Vuurstenen artefacten, een Romeinse dijk, een 14deeeuws muntdepot, een 15de-eeuwse sector van een vissersnederzetting en sporen van een vroeg-17de-eeuwse en vroeg-18de-eeuwse belegering van Oostende, Relicta Monografieën 8, Brussels: agentschap Onroerend Erfgoed, 1115.

Wang, T, Deforce, K, De Gryse, J et al, 2024, 'Evidence for parasites in burials and cesspits used by the clergy and general population of 13th-18th century Ghent, Belgium', Journal of Archaeological Science: Reports 53, 104394.

Zeebroek, I, Gevaert, G, Lenaerts, T et al. 2009, Porselein uit het Oosten, kurk uit het Zuiden... Archeologische sporen van import in Walraversijde en Oostende, Brussels: Vlaams Instituut voor het Onroerend Erfgoed.

Zimmerman, H 2007, Textiel in context: Een analyse van archeologische textielvondsten uit 16de-eeuws Groningen, Groningen: Tienkamp en Verheij.

Abbreviations

CAB City Archives Bruges CAC City Archives Cologne EAB Episcopal Archives Bruges GSA General State Archives Brussels NA National Archives, The Hague OA Old Archive

OCMW Openbaar Centrum voor Maatschappelijk

Welzim

SAB State Archives Bruges

Résumé

Chez l'apothicaire: la vie dans un quartier international de Bruges, au 15^e siècle par Maxime Poulain, Mathijs Speecke, Anton Ervynck, Jan Huyghe, Jan Moens, Marissa Ledger, Eva Vermeersch, Lieselotte Desnerck, An Lentacker, Wim Wouters, Wouter van der Meer, Koen Deforce, Toon De Meester, Nicolas Thomas, Marijn Stolk, Ina Vanden Berghe, Maaike Vandorpe, Alejandra Gutiérrez, Peter Vandenabeele, Wim De Clercq et Bieke Hillewaert

En 1996, une fosse d'aisance a été mise à jour dans la cour de la maison de la nation d'Espagne (Perez de Malvenda is another house!!) à Bruges. L'étude interdisciplinaire de cette ancienne campagne de fouilles éclaire d'un jour nouveau la vie dans ce quartier cosmopolite de la ville, entre la fin du 14e et le début du 16e siècle. Les déchets de la fosse d'aisance sont les témoins de plusieurs générations de négociants, que ce soit un apothicaire aisé qui utilise des instruments alchimiques pour la production de pigments, ou des commerçants espagnols qui sont attestés sur le site dès les années 1480. Cette présence mercantile est reflétée par un éventail inégalé de marchandises, de nourritures et de maladies importées : céramiques d'Italie, d'Espagne et du Portugal; aspersoirs de parfum en verre et soies somptueuses du Proche-Orient; olives, riz et un parasite africain. Ces éléments confèrent une dimension matérielle à l'attractivité de Bruges pour des artistes de renom tels que Jan van Eyck et engendrent des débats sur les penchants cosmopolites des marchands (non-) locaux dans ce centre de négoce international.

Zussamenfassung

In der Apotheke: Leben in einem internationalen Viertel im Brügge des **15. Jahrhunderts** *Von* Maxime Poulain, Mathijs Speecke, Anton Ervynck, Jan Huyghe, Jan Moens, Marissa Ledger, Eva Vermeersch, Lieselotte Desnerck, An Lentacker, Wim Wouters, Wouter van der Meer, Koen Deforce, Toon De Meester, Nicolas Thomas, Marijn Stolk, Ina Vanden Berghe, Maaike Vandorpe, Alejandra Gutiérrez, Peter Vandenabeele, Wim De Clercq und bieke hillewaert

Im hinterhof des ,spanischen hauses' in Brügge wurde 1996 eine Senkgrube entdeckt. Die interdisziplinäre Untersuchung dieser alten Rettungsgrabung wirft ein neues Licht auf das Leben im internationalen Viertel der Stadt zwischen dem späten 14. und frühen 16. Jahrhundert. Der Abfall in der Senkgrube ist das, was mehrere Generationen von Händlern hinterlassen haben: von einem wohlhabenden Apotheker, der alchemistische Apparate zur Herstellung von Pigmenten benutzte, bis hin zu spanischen Händlern, deren Anwesenheit an diesem Ort ab den 1480er Jahren dokumentiert ist. Handelspräsenz spiegelt sich in einer beispiellosen Vielfalt an importierten Waren, Lebensmitteln und Krankheiten wider, die von italienischer, spanischer und portugiegläsernen Keramik. Parfümzerstäubern aus dem Nahen Osten und luxuriöser Seide bis hin zu Oliven, Reis und einem afrikanischen Parasiten reichen. Gegenstände verleihen Anziehungskraft von Brügge für berühmte Künstler wie Jan van Eyck eine materielle Dimension und entfachen die Debatte über den kosmopolitischen Geschmack (nicht-) lokaler Kaufleute in diesem internationalen Handelszentrum.

Riassunto

Alla bottega dello speziale. Vita in un quartiere internazionale di Bruges nel Alla bottega dello speziale. Vita in un quartiere internazionale di Bruges nel XV secolo di Maxime Poulain, Mathijs Speecke, Anton Ervynck, Jan Huyghe, Jan

Moens, Marissa Ledger, Eva Vermeersch, Lieselotte Desnerck, An Lentacker, Wim Wouters, Wouter van der Meer, Koen Deforce, Toon De Meester, Nicolas Thomas, Marijn Stolk, Ina Vanden Berghe, Maaike Vandorpe, Alejandra Gutiérrez, Peter Vandenabeele, Wim De Clercq e Bieke Hillewaert

Nel 1996, nei pressi della casa della Nazione Spagnola a Bruges, tornò alla luce un pozzo nero. Lo studio interdisciplinare di questo vecchio scavo preventivo ha fatto nuova luce sulla vita nel quartiere internazionale della città tra il tardo XIV secolo e gli inizi del XVI secolo. Le materie di rifiuto nel pozzo nero sono quanto è stato lasciato da generazioni di commercianti a partire da un ricco speziale che usava apparati alchemici per la produzione di pigmenti fino ai commercianti spagnoli la cui presenza in questo sito è documentata a partire dal 1480 in poi. La presenza dei mercanti è testimoniata dalla straordinaria varietà di merci importate, di cibi e di malattie: si va dalle ceramiche italiane, spagnole e portoghesi agli spruzzatori di profumo in vetro dal vicino oriente, dalle sete lussuose alle olive, al riso e a un parassita africano. Questi oggetti documentano la dimensione materiale dell'attrazione esercitata da Bruges su artisti rinomati quali Jan van Eyck e accendono il dibattito sui gusti cosmopoliti dei mercanti (non-)locali in questo centro commerciale internazionale.