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The identification of transcription factor (TF) target genes 
is central in biology. A popular approach is based on the 
location by pattern matching of potential cis-regulatory ele-
ments (CREs). During the last few years, tools integrating 
next-generation sequencing data have been developed to 
improve the performance of pattern matching. However, 
such tools have not yet been comprehensively evaluated in 
plants. Hence, we developed a new streamlined method aim-
ing at predicting CREs and target genes of plant TFs in specific 
organs or conditions. Our approach implements a super-
vised machine learning strategy, which allows decision rule 
models to be learnt using TF ChIP-chip/seq experimental 
data. Different layers of genomic features were integrated 
in predictive models: the position on the gene, the DNA 
sequence conservation, the chromatin state and various CRE 
footprints. Among the tested features, the chromatin fea-
tures were crucial for improving the accuracy of the method. 
Furthermore, we evaluated the transferability of predictive 
models across TFs, organs and species. Finally, we validated 
our method by correctly inferring the target genes of key TFs 
controlling metabolite biosynthesis at the organ level in Ara-
bidopsis. We developed a tool—Wimtrap—to reproduce our 
approach in plant species and conditions/organs for which 
ChIP-chip/seq data are available. Wimtrap is a user-friendly 
R package that supports an R Shiny web interface and is pro-
vided with pre-built models that can be used to quickly get 
predictions of CREs and TF gene targets in different organs 
or conditions in Arabidopsis thaliana, Solanum lycopersicum, 
Oryza sativa and Zea mays.
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Introduction

Gene regulation is one of the most fundamental biological phe-
nomena. It explains how, from the same genetic code, a cell 
can harbor different states, according to the cell cycles and the 
signals from the environment. For multicellular organisms such 
as plants, gene regulation is also involved in processes such as 
cell specialization, organogenesis, growth and aging (Aerts 2012, 
Spitz and Furlong 2012). Gene regulation encompasses a cas-
cade of regulatory processes that intervene during the flow of 
genetic information. The control of transcription by RNA poly-
merase II constitutes the first level of regulation. In order to 
transcribe a gene, the RNA polymerase II complex needs first to 
stably bind the DNA upstream in the vicinity of the transcrip-
tion start site (TSS), in a region called the ‘core promoter’. Some 
core promoters present DNA sequences that are sufficiently 
attractive, but in most cases the recruitment of the RNA poly-
merase involves interactions with components that are called 
transcription factors (TFs) and cofactors (Fuda et al. 2009).

TFs are key regulators of gene expression, characterized by 
DNA-binding domains that can recognize specific motifs of 
6–20 nucleotides. They are proteins that bind to cis-regulatory 
regions located on the ‘promoter’, upstream of the TSS, near 
the binding sites of the RNA polymerase, and are classified as 
repressors or activators depending on whether they favor or 
block the recruitment of the subunits of the polymerase (Lee 
et al. 2012). However, the mechanisms of action of transcrip-
tion are complex. Organisms pack the DNA in highly condensed 
structures, called ‘chromatin’, that allow fitting within the space 
of the cell (prokaryotes) or the nucleus (eukaryotes), mak-
ing it difficult for regulatory molecules to access and bind to 
DNA. The action of some TFs consists therefore of triggering or 
maintaining the opening of the DNA at cis-regulatory regions
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(Spitz and Furlong 2012). Another source of complexity orig-
inates from the existence of additional cis-regulatory regions 
located outside the promoter, such as enhancers and silencers 
(Lenhard et al. 2012). The latter are located remotely in terms of 
base pairs from the TSS, upstream, downstream or on the gene 
body, and interact with the promoter, thanks to the ability of 
the DNA to form loops that bring two regions closer together. 
TF activity is crucial to determine the state and identity of a 
cell and thus to regulate developmental processes and stress 
responses (Vaquerizas et al. 2009). This activity is dependent on 
the chromatin state and the TF expression, post-translational 
modifications and interacting partners, which might be specific 
to the condition or lineage (Veljkovic and Hansen 2004).

TF target genes can be predicted based on the sequence 
specificities of the cis-regulatory elements that can be recog-
nized by the TF of interest. To identify TF target genes, several 
challenges have to be addressed: (i) identifying and model-
ing (as ‘motifs’) the sequence specificities of TF-binding sites 
(TFBSs) and (ii) locating and scoring the potential occurrences 
of motifs along cis-regulatory regions, i.e. ‘pattern matching’ 
(Aerts 2012). Since the 1980s, intense research efforts have 
been made in this field. For prokaryotes, efficient and well-
performing methods have been obtained (Vuong and Misr 
2011), while for most of the multicellular eukaryotes there is still 
a need for further development. The main difficulty for the lat-
ter organisms relies on the length of the cis-regulatory regions, 
which are longer than in prokaryotes (Hardison and Taylor 
2012). Because the sequence of the TFBSs is highly variable and 
too short compared with the length of the regions considered as 
‘cis-regulatory’, a genome-wide analysis might identify almost all 
the genes as potential targets of the studied TFs. To restrict the 
width of the ‘cis-regulatory’ regions on which pattern matching 
is performed, ‘cluster’ and ‘phylogenetic’ footprinting methods 
can be used, as TFs tend (i) to cluster (cis-regulatory regions 
show intervals with a high density of binding sites of the same 
and/or of different TFs) and (ii) to bind to sites (or clusters) that 
are evolutionarily conserved. These methods of footprinting still 
suffer, however, from a high number of false-positive predictions 
of cis-regulatory regions (Aerts 2012).

In recent years, new experimental strategies to study cis-
regulatory elements on a genome-wide scale have emerged. In 
particular, ChIP-chip/seq has made it possible to map the bind-
ing regions of transcription (co)-factors (Mundade et al. 2014) 
as well as to study specific marks and variants of ‘histones’. In 
eukaryotes, the histones are proteins that associate with DNA 
to form the ‘chromatin’. In that structure, DNA is wrapped 
around a succession of yoyo-shaped histone octamers (‘nucleo-
somes’), which can pile up in a closed and condensed structure 
which makes the DNA inaccessible to transcription (co)-factors 
(Bonev and Cavalli 2016). Some mechanisms allow unpack-
ing of the structure, depending to a large extent on histone 
variants and marks (e.g. covalent modifications of the histone 
tails) (Lawrence et al. 2016) as well on methylation of the cyto-
sine, which might be studied by BiSulfite-seq (BS-seq) (Jones 
2012). The control of the DNA accessibility is therefore decisive 

in the regulation of the binding of cis-regulatory elements 
by TFs. Complementary techniques to ChIP-chip/seq and BS-
seq, such as DNase I-seq, Assay for Transposase-Accessible 
Chromatin using Sequencing (ATAC-seq), Micrococcal Nucle-
ase Digestion with deep Sequencing (MNase-seq), Nucleosome 
Occupancy and Methylome Sequencing assay (NOMe-seq) or 
Formaldehyde-Assisted Isolation of Regulatory Elements using 
Sequencing (FAIRE-seq), have allowed the degree of opening of 
the DNA to be directly probed (Meyer and Liu 2014).

The greater availability of genomic and epigenomic data 
paved the way for new bioinformatic methods dedicated to the 
prediction of TFBSs. An expanding number of tools have been 
released (Gusmao et al. 2016, Jankowski et al. 2016, Kumar and 
Bucher 2016, Chen et al. 2017, Liu et al. 2017, Qin et al. 2017, 
Quang and Xie 2017, Schmidt et al. 2017, Schmidt et al. 2019, 
Behjati Ardakani et al. 2019, Keilwagen et al. 2019, Li and Guan 
2019, Li et al. 2019). Of particular interest is the new footprinting 
approach, called ‘digital genomic’ footprinting, which is based 
on the property of the TFs to protect the cis-regulatory ele-
ments from cleavage by DNase I. In contrast to ‘cluster’ and 
‘phylogenetic’ footprinting techniques, digital genomic foot-
printing takes into account the chromatin state dynamics and 
therefore the accessibility of the cis-regulatory elements across 
treatments, growth stages or cell types and tissues.

However, in plant species, long-established techniques have 
not been systematically compared with new methods and, 
importantly, integrative tools able to combine all these tech-
niques are still lacking (Lai et al. 2019). Therefore, we devel-
oped Wimtrap, a tool to predict condition- or organ-specific 
cis-regulatory elements and TF gene targets, with a great flex-
ibility regarding the input data. We used this tool to com-
pare most of the different techniques described above and 
to evaluate the benefits of combining them. Accuracy of 
the predictions was obtained based on ChIP-chip/seq data 
and allowed the validation of Wimtrap. We illustrated the 
use of our tool with an example highlighting the strength 
of the condition specificity of the predictions, taking into 
consideration TFs that control the late steps of flavonoid 
biosynthesis. Wimtrap is implemented as a fully documented 
R package (https://github.com/RiviereQuentin/Wimtrap) and 
Shiny application (https://github.com/RiviereQuentin/Wim-
trapWeb). We focused mainly on Arabidopsis thaliana (L.)—the 
model species for plant genetics and molecular biology—but 
extended our work to other plant species. Wimtrap works cur-
rently for A.thaliana in 10 conditions (organs or growing con-
ditions), Solanum lycopersicum in two conditions, and Oryza 
sativa and Zea mays in one condition.

Results

Analysis overview
We developed a machine learning approach (Fig. 1) to predict 
cis-regulatory elements and TF target genes using information 
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obtained from motifs of TFBSs, DNA sequence, transcript 
models, conserved elements and/or epigenetic data. The 
method is focused on plants, especially on A.thaliana, the 
model species for plant genetics and molecular biology, for 
which data are the most abundant. The different analyses that 
we performed, as well as our workflow, can be schematically 
described as follows.

First of all, based on a literature search and the query of seven 
specialized databases, we retrieved: (i) the genomic sequences 
and the transcript models of A.thaliana, S.lycopersicum, O.sativa
and Z.mays, (ii) the motifs and ChIP-chip/seq data for 57 TFs in 
the seedlings and flowers of A.thaliana, in the ripening fruits of 
S.lycopersicum, in the seedlings of O.sativa and in the seedlings 
of Z.mays, (iii) five genomic maps of cis-regulatory elements 
(two in A.thaliana, and one each in S.lycopersicum, O.sativa and 
Z.mays), (iv) five genomic maps of digital genomic footprints 
(DGFs; one in A.thaliana flowers and one each in seedlings of 
the other three species and (v) 42 chromatin feature-peak data 
(24 in A.thaliana seedlings, three in A.thaliana flowers, three in 
S.lycopersicum seedlings, nine in O. sativa seedlings and three in 
Z.mays seedlings). These data and information were then inte-
grated into the Wimtrap pipeline, composed of several steps 
(Fig. 1):

Step 1: Motif match location along the genome. Pattern 
matching analyses were carried out with the motifs of the TFs to 
obtain the location of the candidate binding sites (= the motif 
matches). Each candidate was scored according to the fit of the 
DNA sequence with the motif.

Step 2: Motif match annotation. The motif matches were 
annotated with features characterizing their genomic context. 
The distance of the candidate binding sites to the closest tran-
script was calculated using the TSS as reference. The structure 
(promoter, coding sequence, etc.) overlapped by the candi-
date binding sites was also determined. Then, the average signal 
or the density of peaks/elements of the features related to 
DNA sequence conservation, DGFs and chromatin state were 
computed on intervals of ± 10, ± 200 or ±500 bp around the 
potential cis-regulatory elements.

Step 3: Motif match labeling and dataset balancing. The 
motif matches were labeled as ‘positive’ (‘is.TFBS=1’) when they 
were validated by available ChIP-chip/seq data, and as ‘nega-
tive’ (‘is.TFBS=0’) when not. To avoid an over-representation of 
the negative candidate binding sites compared with the positive 
ones, a subset of negative candidate binding sites was randomly 
selected so that the composition of the dataset changed to 
50% of negative and 50% of positive motif matches. Balancing 
a dataset is a classical approach to overcome the tendency of 
predictive models to categorize all the instances into the most 
prevalent class (here, that of the ‘negative’ candidate binding 
sites) when the minority class (the ‘positive’ candidate binding 
sites) is rarely represented (Kotsiantis et al. 2006).

Step 4: Modeling of motif match classifiers. ‘Decision-rule’ 
models, made up of a collection of regression trees, were 
trained by extreme gradient boosting (Chen and Guestrin 
2016). Such models allowed a decision to be made as to whether 

a candidate TFBS was ‘positive’ or ‘negative’ based on the inte-
grated features. Two kinds of models were built: the TF-specific 
models, based on data from a single TF, and the TF-pooled mod-
els, obtained from all the TFs considered in a given organism and 
condition (seedlings of A.thaliana, flowers of A.thaliana, ripen-
ing fruits of S. lycopersicum, seedlings of O.sativa or seedlings 
of Z.mays). The TF-specific models were trained with different 
sets of features in order to compare the predictive potential 
of existing techniques and assess the benefits of an integrative 
approach.

Step 5: TFBS prediction. New motif matches, which were 
not used in the modeling process and were located and anno-
tated as described above (steps 1 and 2), were fed to the binary 
classifiers. These models classified the candidates as either ‘posi-
tive’ (‘is.TFBS=1’) or ‘negative’ (‘is.TFBS’=0). The first ones were 
retained as the predicted TFBSs, while the second ones were 
filtered out.

Finally, we evaluated Wimtrap. TF-specific models were used 
to assess the method accuracy, depending on the integrated 
features, as well as to perform state-of-the art feature impor-
tance analyses. TF-pooled models were tested for their trans-
ferability across TFs/conditions/organisms, and were applied to 
a real-world example of a case study. Model accuracies were 
calculated by computing the area under the ROC (receiver 
operating characteristic) curve (AUC). For TF-specific mod-
els, we proceeded to the 5-fold cross-validation protocol: each 
TF-specific dataset was split into five sub-datasets. Training 
and AUC computation were iterated five times, each time 
using a different sub-dataset for obtaining the ROC curve. For 
TF-pooled models, we tested such models on TFs and/or con-
dition or organism that were not taken into account in the
training.

Performances of TF-specific models according to 
the integrated features
Based on the 28 TFs studied by ChIP-seq in A.thaliana seedlings, 
we computed the ROC curves of TF-specific models trained 
with different groups of features, taken individually or in com-
bination (Fig. 2). These groups of features were called ‘layers’, 
as they represented distinct layers of information that could 
be added to each other. The layers are the following: (i) motif 
occurrences and scores, (ii) position related to the transcript 
model, (iii) DNA sequence conservation, (iv) DGF occurrence 
and score, and (v) chromatin state.

Each layer corresponds to a given technique. The first layer is 
related to the ‘cluster’ footprinting, the second to the tendency 
of the TFs to be located on the promoters in proximity to the 
TSS, the third to the ‘phylogenetic’ footprinting, the fourth to 
the ‘digital genomic’ footprinting and the fifth to the association 
of TFs with a genomic region characterized by an open state of 
the chromatin.

For each layer of features, we also briefly characterized the 
association between the cis-regulatory elements and the fea-
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Fig. 1 Methodology workflow diagram. Location, annotation and labeling of candidate TF-binding sites. The candidate binding sites of the TFs 
included in ChIP peak results are (i) located by pattern matching, (ii) labeled as ‘positive’ (‘is.TFBS = 1′) when they overlap a ChIP peak in the 
considered condition and ‘negative’ when not (‘is.TFBS = 0) and (iii) annotated with their position on the closest transcript and with the average 
signal of the genomic data in their neighborhood, on windows of ±10, ±200 and ±500 bp. Machine learning: A binary classifier is trained by 
extreme gradient boosting (XGBoosting). The latter implements a supervised learning strategy, where an ensemble of decision tree models are 
trained to predict the label of motif matches based on their match P-value and their annotations. Prediction of TF-binding sites: The binary 
classifier is used to predict the label of a new set of motif matches, located and annotated as described above. The motif matches assigned 
to ‘is.TFBS = 1′ by the classifier are those predicted as TF-binding sites. The other motif matches, assigned to ‘is.TFBS = 0′ , are left over. PWM, 
position weight matrix; TF, transcription factor; Chr, chromosome; CE, conserved element; TFBS, TF-binding site. 
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Fig. 2 Predictivity of the layers of features and selected combination of features (A) Mean ROC curve and (B) AUC achieved by internal validation 
of TF-specific models that integrate, in addition to the P-values of the matching score of the PWM matches, the genomic context features that 
belong to the different layers of features. For each TF, a model is built and evaluated based on a balanced dataset for that factor following the 
5-fold cross-validation procedure: the considered dataset is divided into five partitions. Of these, four are considered to build a model and one 
is used to assess the performance. The operation is repeated five times, in such a way that each partition is retained only once for validation 
purposes. (C, D) As above, but considering a combination of selected features. PM, pattern matching; DHS, DNase I hypersensitivity; DGF, digital 
genomic footprint scores. Layer 1 includes the results of pattern matching. 

tures. These associations can be visualized in Supplementary 
Figs. S1–S5, in which Pearson’s correlation between the features 
and the ‘is.TFBS’ label of the potential binding sites (equal to 1 
when a potential binding site is ‘positive’, and to 0 when it is 
‘negative’) was plotted.

Layer 1: Motif occurrence and score. Layer 1 allowed assess-
ment of the pattern matching and the ‘cluster’ footprinting 
method as it includes the P-value of the PWM (pseudo weight 
matrix) matches and the number of matches co-occurring in 
the vicinity of the potential binding sites. Models based solely 

on pattern matching (scores of the PWM matches) were asso-
ciated with an average AUC of 0.60 (Fig. 2C). Integrating the 
density of PWM matches on windows of 400 bp or 1,000 bp 
led to an AUC of 0.66. Features of the layer showed a vari-
able but overall low ability to filter the potential binding sites 
(Supplementary Fig. S1). The P-values of the PWM matches 
exhibited low predictive levels, except for the TFs NAC50 and 
NAC52.

Layer 2: Position on the gene. Layer 2 allowed evaluation of 
the rationale behind promoter scanning. Models integrating 
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Fig. 3 Importance of the genomic features in the full TF-specific models obtained from TFs studied in seedlings of Arabidopsis thaliana. Importance 
is expressed in terms of gains. Only the features selected in at least one model are shown. The features are ordered according to their average 
importance amongst the models considered, while the TFs are ordered by hierarchical clustering. For each item of data, the gains associated with 
the features extracted on windows of 20, 400 and 1,000 bp are summed. DGF, digital genomic footprint; DHS, DNase I hypersensitivity; CNS, 
conserved non-coding sequence; Nb., number; P-val, P-value; Cme, cytosine (DNA) methylation; TSS, transcription start site; TTS, transcription 
termination site; UTR, untranslated region. 

the results of pattern matching with the position on the gene 
(structure and distance to the closest TSS) reached on average 
an AUC of 0.73 (Fig. 2C). We found that potential binding 
sites located on the promoter or the 5′-untranslated region 
(5′-UTR) were more likely to be cis-regulatory elements, while 
those located on the intron or coding sequence were less likely 
to be so (Supplementary Fig. S2). The chance for a PWM match 
to be a cis-regulatory element increased while getting closer 
upstream to the TSS but suddenly dropped at several base pairs 
downstream from the TSS. Overall, 49% of the cis-regulatory ele-
ments were located on the promoter at a maximum of 2,000 bp 
from the TSS, while 9% were located on the 5′-UTR (Fig. 4). 
The 42% remaining cis-regulatory elements were distributed as 
follows: (i) 18% in the gene body, downstream of the 5′-UTR 

(i.e. the coding sequence, intron and 3′-UTR), (ii) 8% in the 
regions downstream of the transcript stop site and (iii) 16% in 
the intergenic regions.

Layer 3: DNA sequence conservation. We integrated two sets 
of conserved elements in A.thaliana, from which we respec-
tively derived the ‘Conserved Non-Coding Sequences’ (‘CNS’) 
and ‘Phastcons’ datasets. The first dataset was built by combin-
ing the location of non-coding conserved elements predicted 
by three independent studies (Thomas et al. 2007, Baxter et al. 
2012, Haudry et al. 2013), which analyzed the homeologs in 
A.thaliana and the orthologs in the eudicots and the fam-
ily of the Brassicaceae. The second dataset is composed of 
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Fig. 4 Comparison of the performance of the TF-specific models with the TF-pooled models For each TF, a model based on the data related to 
this TF (TF-specific model) and to the other TFs (general model) are compared. The area under the ROC curve (AUC) is evaluated. The features 
of all the layers are combined to build the models. 

scored phylogenetic footprints that have been identified with 
the ‘phastCons’ tool (Siepel and Haussler 2005) from the align-
ment of the coding and non-coding sequences of ortholog 
genes belonging to 63 monocots and eudicots plants species 
(Tian et al. 2020). Layer 3 is associated with the ‘phylogenetic 
footprinting’ approach. Models combining the results of pat-
tern matching and sequence conservation obtained an average 
AUC of 0.81. With the ‘CNS’ dataset, we observed a clear ten-
dency of the cis-regulatory elements to be associated with phy-
logenetic footprints (Supplementary Fig. S3). However, some 
differences across TFs were found. For instance, the binding 
sites of NAC50 and NAC52 did not tend to be associated with 
evolutionarily conserved regions. For CCA1, HAT22, MYB44, 
HB5, HB7, HB6 and LHY, the cis-regulatory elements did not 
tend to be conserved (cf. 20 bp windows) but were associ-
ated with highly conserved surrounding regions (cf. 400 bp and 
1,000 bp windows). With the second set of conserved elements 
(named ‘Phastcons’), the association between the cis-regulatory 
elements and high degrees of conservation of DNA sequence 
was generally weak (Pearson’s correlation of −0.11 on average).

Layer 4: DGF occurrence and score. Layer 4 was constructed 
based on the results of a state-of-the-art digital genomic foot-
printing analysis. Models built on the results of pattern match-
ing and digital genomic footprinting reached an average AUC 
of 0.87 (Fig. 2C). The cis-regulatory elements were preferentially 
located in regions of a high density of DGFs (cf. 400 bp and 1,000 
bp windows) (Supplementary Fig. S4). NAC50 and NAC52 cis-
regulatory elements were not associated with DGFs, in contrast 
to those of the other TFs.

Layer 5: Chromatin state. The integration of 23 chromatin 
state-related features into the results of pattern matching led to 
models with an average AUC of 0.91 (Fig. 2C). The cis-regulatory 

elements were found to be associated with different chromatin 
states defined by Sequeira-Mendes et al. (2014) and ranked 
from ‘A’ to ‘I’ according to their degree of DNA opening. The 
association was positive with the ‘B’ and ‘D’ chromatin states 
and negative with the ‘G’, ‘H’ and ‘I’ states. Sequeira-Mendes 
et al. (2014) observed that the chromatin states ‘B’ and ‘D’ 
tended to occur on intergenic regions (including promoters and 
enhancers), the ‘G’ on introns and coding sequences, and the 
‘H’ and ‘I’, on heterochromatin (Supplementary Fig. S5). When 
assessing in more detail the individual variables characterizing 
the chromatin state, the eight features most associated with 
cis-regulatory elements were, in decreasing order of association: 
the DNase I hypersensitivity score (DNAseI-hypersensitive sites 
(DHS); a measure of the opening of DNA), the H3K4me1 histone 
mark, the methylation of cytosine, the nucleosome density and 
the H3K27me1, H3K9me2, H3K56ac, H2BuB and H3K18ac his-
tone marks. TFs showed overall homogeneous patterns. How-
ever, for four of them, several important features were not 
associated with cis-regulatory elements. This was the case for 
NAC50 and NAC52, for which a lack of predictivity of the DHS 
and H3K56ac could be observed, as well as CCA1 and IBH, 
for which the nucleosoms density, and H3K18ac and H2BuB 
histone marks were not predictive of cis-regulatory elements.

For this layer, we also assessed whether the association 
of the chromatin state features with the cis-regulatory ele-
ments depended on the distance to the TSS because differ-
ences between the promoters and the enhancers were expected 
(Sequeira-Mendes et al. 2014) (Supplementary Fig. S6). There 
were five chromatin features for which the signal was on average 
distinct between positive and negative potential binding sites 
independently from the distance to the TSS: DHS, H3K4me1, 
H3K27me1 and H3K9me3. The remaining features showed lit-
tle association with the cis-regulatory elements in the imme-
diate vicinity of the TSS. On distal regions, H2A.Z, H3K56ac 
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and H4K5ac showed strong associations with binding sites. As 
regards H3K18ac and H3K27me3, a striking finding was that 
cis-regulatory elements were associated with high or low levels 
depending on whether the regions were distal or proximal to 
the TSS (< −2,500 bp for H3K27me3, < −5,000 bp for H3K18ac).

Combination of layers. The combination of the condition-
independent layers 1, 2 and 3 allowed us to obtain an average 
AUC of 0.84. The combination of the whole set of layers led to 
an average AUC of 0.92.

Restriction of layer 5 to the DHS features only. Finally, we gener-
ated ROC curves using only the features related to DNA opening 
(DHS) to consider the chromatin state. We found that DHS 
was the feature the most associated with the cis-regulatory ele-
ments in layer 5 (Supplementary Fig. S7). Models based only 
on pattern matching and DHS showed an average AUC of 0.86 
(Fig. 2D). Adding only layer 4 to these models led to an average 
AUC of 0.88, while adding layer 4 together with layers 1, 2 and 3 
led to an average AUC of 0.91 (Fig. 2D).

Importance of features in the full TF-specific 
models
We studied the relative importance of the features in the 28 
TF-specific models built in A.thaliana seedlings (see ‘Analysis 
overview’) based on the whole set of features (layers 1–5) (‘full’ 
TF-specific models). We considered the gain, a classical metrics 
for XGBoost models. The gain of a feature is equal to the sum 
of the gains at each branch that uses this feature to operate a 
split, divided by the sum of the gains of all the features. XGBoost 
adds new splits on regression trees depending on the added 
gain, which reflects the increase of accuracy in a leaf when 
this leaf is further split into two new ones (Chen and Guestrin 
2016). The DGF (layer 4), associated with an average gain of 42%, 
appeared as the most important feature in the TF-specific mod-
els for all the TFs (Fig. 3). The other features had on average 
<10% of gain. The most important features among those were, 
in decreasing order of importance: DHS (layer 5), H3K4me1 
(layer 5), PhastCons (layer 3), CNS (layer 3), H2A.Z (layer 5), 
number of matches (layer 1) and P-value of the PWM match 
score (layer 1). They accounted for a gain of 24% on average. 
They were followed by the remaining features of layer 5 (cyto-
sine methylation and the histone marks—except H3K4me1), 
responsible for a total average gain of 34%, and by the features 
of layer 2 (position on the gene), which did not bring any gain to 
the models. The absence of gain associated with the features of 
layer 2 indicated that they were redundant with other features, 
most probably with the histone marks and variants, which can 
be combined to predict the position of different gene structures 
along the genome (Heyndrickx et al. 2014). We can therefore 
postulate that such features add similar information when they 
are integrated into a model already including features related to 
DNA opening (such as DHS or DGF). This probably explains why 
removing the histone marks from the full TF-specific models 
reduced the AUC by only 0.1, from 0.91 to 0.92 (Fig. 2D).

Essentially, the analysis of feature importance agreed with 
that of the performances of the TF-specific models according 
to the integrated feature, which was presented in the previ-
ous section. In fact, DGF and DHS were the most determinant 
features in increasing the accuracy of the sole pattern match-
ing but could not explain alone the performances of the full 
models (Fig. 2D). In addition, there were only a few notice-
able variations across the TF-specific models for the importance 
of the feature. Among them, for some TFs, DGF was not the 
most important feature. In PRR7 and PIF3 models, this was the 
DHS; in the NAC50 model, the H3K4me1 histone mark; and in 
the NAC52 model, the H2A.Z variant. The P-value of the PWM 
match was only 3% on average, but it increased to 8, 14 and 10% 
in the models of GBF3, NAC52 and NAC50, respectively, except 
PRR7, PIF3, NAC50 and NAC52. However, the overall homo-
geneity of the results observed across the different TFs justifies 
testing the performances of TF-pooled models.

Transferability of TF-pooled models
To evaluate the generalization of Wimtrap, we trained general 
models by pooling data related to all TFs except one and eval-
uated the performances on the TF that was left over. We then 
compared for each TF the performance of the general model 
with the one obtained with its specific model (Fig. 4). We 
applied this approach for each of the selected 28 TFs in Ara-
bidopsis seedlings. Performances of the TF-pooled models and 
of the TF-specific ones were similar, except for NAC50, NAC52, 
and IBH1.

We also evaluated the transferability of TF-pooled models 
across conditions or species. We could build models only from 
A.thaliana flowers, from S.lycopersicum ripening fruits, O.sativa
seedlings and Z.mays seedlings as we could not find more 
than two TF ChIP-chip/seq data for other plant species/condi-
tions. In Arabidopsis seedlings, we assessed a TF-pooled model 
trained from Arabidopsis flowers, S.lycopersicum ripening fruits, 
O.sativa seedlings and Z.mays seedlings. The set of features inte-
grated in the models was restricted to the features of layers 1–4 
in addition to the DHS and the methylation of cytosine. Indeed, 
all the genomic data were not available in both the training and 
tested condition ‘organism’. We extracted the epigenetic data 
related to Arabidopsis seedlings and used the models obtained 
from Arabidopsis flowers, S.lycopersicum ripening fruit, O.sativa
seedlings and Z.mays seedlings, respectively, to predict the 
binding sites in Arabidopsis seedlings. This allowed us to reach 
an average AUC of 0.80 with the first model, 0.86 with the sec-
ond one, 0.68 with the third one and 0.82 with the last one 
(Fig. 5). These were higher values than the average AUC of 0.60 
associated with sole pattern matching (Fig. 2).

As the model obtained from O.sativa showed lower perfor-
mances than the other models applied to Arabidopsis seedlings, 
we performed additional analyses to obtain further insights. We 
built an extended model, based on the above-mentioned fea-
tures and on seven different chromatin marks. In rice, the chro-
matin marks were more important than the DHS and the DGF. 
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Fig. 5 Performances of models trained on Arabidopsis seedlings, Ara-
bidopsis flowers, tomato ripening fruits, rice seedlings and maize 
seedlings, and evaluated on the 28 TFs studied in Arabidopsis seedlings 
The area under the ROC curve is reported. In the Arabidopsis flowers 
model, the features of layers 1, 2, 3 and 4 are integrated in addition 
to the DHS and the methylation of the cytosine, while in the tomato 
ripening fruits model, the features of layers 1 and 3 are in integrated in 
addition to the Phastcons, the DHS and the methylation of cytosine. 

Accordingly, the AUC obtained for predicting cis-regulatory ele-
ments of TFs in O.sativa seedlings increased from 0.76 to 0.84 
when the chromatin marks were integrated with the features of 
layers 1–4, the DHS and the methylation of cytosine (data only 
presented in text).

Characterization of targets of MBW TFs involved in 
the regulation of plant flavonoids
In order to test Wimtrap on a real-world application, we pro-
ceeded to identify the gene targets and validate the pathways 
that are controlled by TT2, TT8 and TTG1, which constitute the 
MYB–bHLH–WD40 (MBW) complex and that control the syn-
thesis and accumulation of secondary metabolites (i.e. phenyl-
propanoids) in seeds. While TT8 and TTG1 participate in other 
MBW complexes that control the accumulation of flavonoids 
in leaves (e.g. TTG1–TT8–PAP1), TT2 is more specific to seeds, 
despite recent studies suggesting that TT2 also controls heat 
stress responses in the vegetative parts of Arabidopsis (Jacob 
et al. 2021). The decision to study the TT2–TT8–TTG1 com-
plex is based on our expertise in phenylpropanoid compounds 
in plants (Corso et al. 2020, Corso et al. 2021, Alberghini et al. 
2022, Boutet et al. 2022) and because the role of this MBW 
complex in controlling phenylpropanoid metabolism in seeds 
has been experimentally validated in several studies (see Xu 
et al. 2015 for a review). Hence, we regarded it as a relevant 
case study to illustrate how the outputs by Wimtrap can differ 
according to the tissue considered. We predicted the gene tar-
gets of TT2–TT8–TTG1 in seeds, roots and flowers of A.thaliana. 
Even though there were no TF ChIP data in seeds and roots, 
we could run our tool in these organs because we could get 
DGF- and DHS-predictive features and could transfer the TF-
pooled model trained from seedlings. Using this rationale, six 
additional conditions were also included in our package for 
A.thaliana (non-hair part of the roots, heat-shocked seedlings, 

dark-grown seedlings, dark-grown seedlings exposed to 30 min 
of light, dark-grown seedlings exposed to 3 h of light and dark-
grown seedlings exposed to a long day cycle) and one for 
S.lycopersicum (immature fruits).

To perform this analysis, we first predicted the gene targets 
TT2, TT8 and TTG1. We considered that the gene targets of a TF 
are the genes whose TSS is the closest to a potential binding site 
predicted as ‘positive’ using Wimtrap. We determined the best 
prediction score threshold to distinguish between ‘positive’ and 
‘negative’ candidate gene targets based on the 28 TFs studied in 
A.thaliana seedlings. This best threshold was 0.86 on average.

The results highlighted a strong impact of the tissue on the 
type and number of potential TT2, TT8 and TTG1 gene tar-
gets (Fig. 6A, B). In addition, a higher number of potential 
targets was identified in seeds and roots for TT2 and TT8, com-
pared with TTG1, while a similar number of targets among the 
MBW TFs was predicted in flowers (Fig. 6A). The Gene Ontol-
ogy (GO) enrichment analyses revealed a higher number of 
enriched GO terms in seeds compared with roots and flowers 
(Fig. 6B). Finally, we focused on phenylpropanoid-related GO 
terms to evaluate whether our predictions could point towards 
a more significant association of TT2 with phenylpropanoid 
metabolism in seeds than in other organs, as expected accord-
ing to the literature (Corso et al. 2021). A higher number 
of enriched GO terms associated with phenylpropanoids and 
flavonoids was identified for TT2 compared with TT8 and TTG1, 
with differences according to the tissue considered in the anal-
yses (Fig. 6C). In the seed, four, two and one phenylpropanoid 
GO terms were identified for TT2, TT8 and TTG1, respectively. 
In roots, there were less enriched phenylpropanoid GO terms 
(or with a higher P-value) than in seeds for all three TFs. This 
held true in flowers for TT2 and TT8, while it was the opposite 
for TTG1, which had a higher number of enriched phenyl-
propanoid GO terms in flowers than in seeds. Our results agree 
with the role that is more specific to the seeds of TT2 in the 
accumulation of phenylpropanoids.

Discussion

An efficient approach to exploit and study genomic 
features at the location of TF-binding sites
The identification of the transcriptional targets of a TF by an 
approach based on pattern matching represents a major chal-
lenge. An important difficulty consists of building reference 
datasets. To date, there is still no consensual method to build 
a reference set of binding sites based on ChIP-seq data (Li et al. 
2019). The identification of the ChIP peaks is dependent on 
the tool and the parameters that were used. Moreover, ChIP 
peaks do not allow the precise location of the binding sites 
and they report only stable interactions (Mundade et al. 2014). 
Another limitation inherent to our study comes from the epi-
genetic data. Due to their scarcity, we integrated data that were 
not perfectly fitting with the ChIP-seq data (from seedlings of 
different ages, grown in different conditions). In spite of that, 
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Fig. 6 Prediction of gene targets of components of the MBW complex 
and associated pathways (A) Number of putative targets predicted 
for TT2, TT8 and TTG1 using Wimtrap in seeds, roots and flowers.
(B) Number of GO-enriched biological process terms among the puta-
tive targets of TT2, TT8 and TTG1 in the different organs considered. 
(C) Bubble chart representing the phenylpropanoid-related GO terms 
significantly enriched (FDR ≤ 0.05) in seeds, roots and flowers among 
the TT2, TT8 and TTG1 targets predicted in Arabidopsis. The GO 
terms are clustered according to the TF and the tissue considered. They 
are represented as circles whose diameter is proportional to the loga-
rithm of their size (i.e. the total number of genes they annotate in the 
TAIR10 genome) and whose color follows a gradient scale related to 
the logarithm of their FDR (Fisher’s enrichment test). 

the results obtained with Wimtrap were consistent among the 
TFs considered.

We could assess in particular: (i) the predictivity of different 
layers of genomic features, (ii) the influence of the scale of the 
considered genomic regions and (iii) the generalization of the 
models.

Predictivity of layers of features. We obtained high perfor-
mances of models when predicting TFBSs in Arabidopsis 
seedlings. Wimtrap highlighted the decisiveness of the features 
based on the DNase I-seq data [i.e. those related to DNase 
I-hypersensitive sites (DHS—open regions of DNA) and the dig-
ital genomic footprints (DGF)]. Compared with the histone 
modifications, the DHS present the important advantage of 
preserving their predictivity independently from the distance 
to the TSS. The high predictive power of the DHS can also be 
linked to their ability to identify both active and resting TFBSs 
(Zhu et al. 2015). They might therefore buffer variations related 
to the activity of enhancers and promoters across the integrated 
data, which were obtained from independent studies.

Despite being less predictive than the DHS (included in 
layer 5) and the DGF (layer 4), the features of layers 1–3, 
which are related to condition-independent features (results 
of pattern matching and ‘phylogenetic’ footprinting and posi-
tion on the gene), were also shown to be very valuable for 
significantly improving the performances of pattern match-
ing. Layers 1–3 are therefore ‘time and cost-effective’ as, in 
contrast to layer 5, they are already available for numerous
plants.

The predictivity of the genomic data might vary accord-
ing to their quality and/or the approach that was taken to 
generate them. This is well illustrated with the layer related 
to DNA sequence conservation, in which the dataset ‘Phast-
cons’ appeared less predictive than the ‘Conserved Elements’ 
dataset. Indeed, to allow sensitive detection of conserved ele-
ments, it is important to restrict the comparison to species that 
diverged relatively recently (Haudry et al. 2013), but the ‘Phast-
cons’ dataset was computed from a wide set of phylogenetically 
distant eudicots (Tian et al. 2020). This might make the identifi-
cation of the conserved elements on enhancers very difficult as 
the divergence is an important source of phenotypic novelties 
on these cis-regulatory regions (Meireles-Filho and Stark 2009, 
Wittkopp and Kalay 2012).

One advantage of our approach is that it allows the auto-
matic elaboration of decision rules that are more complex 
than simply retaining all the PWM matches that are located 
on a promoter or a conserved element, DHS or DGF. We 
found that the modeling was especially relevant to obtain good 
performances at predicting binding sites based solely on the 
condition-independent features of layers 1–3. To a lesser extent, 
we also found as that our method could improve the results 
of digital genomic footprinting by integrating features of layers 
1–3 and 5.
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Multiscale extraction of genomic features. The analysis at dif-
ferent scales of the genomic regions on which the potential 
binding sites are located (in 20, 400 and 1,000 bp windows) is 
a characteristic of our method. We obtained important gains 
in the prediction of potential of the features related to digital 
genomic footprinting, DNA sequence conservation, number of 
PWM matches and nucleosome positioning when considering 
the surrounding context of the potential binding sites and not 
only their 20 bp genomic location. These improvements might 
primarily come from the tendency of the TFs to be densely 
recruited on cis-regulatory regions (Aerts 2012, Pott and Lieb 
2015), which can be identified from clusters of binding foot-
prints, conserved elements or homotypic PWM matches. As for 
the special case of the nucleosome positioning data, we suggest 
that the overlap of a potential binding site with a nucleosome is 
not predictive because some nucleosomes can be easily moved 
to make cis-regulatory elements accessible (Collings et al. 2013, 
T. Zhang et al. 2015). However, the density of nucleosomes 
in the surrounding regions is important as TFs tend to target 
loosely packed regions of the chromatin.

Our approach allows some technical limitations to be over-
come. For instance, evolutionarily conserved binding sites can-
not be identified individually but only in clusters due to their 
short sequences (Haudry et al. 2013). Regarding the digital 
genomic footprints, it is known that they might be distant by 
>20 bp from the actual binding site (Neph et al. 2012, Gusmao 
et al. 2014).

Generalization of the models across TFs and organisms/condi-
tions in plants. The generalizability of the predictive models 
across TFs and conditions in a given organism opens up a wide 
range of applications. The pre-existence of ChIP/chip-seq data 
related to the studied TFs and/or to the studied condition is 
not necessary. Nevertheless, we must point out that transfer-
ring models from one condition to another comes with a cost 
in terms of performance. This might be related, among others, 
to differences in quality between the genomic data obtained 
in the ‘training’ condition and those obtained in the ‘studied’ 
organism condition. We have also to point out that TF-pooled 
models of NAC50 and NAC52 perform substantially less well 
than TF-specific models. NAC50 and NAC52 bind the DNA on 
sites exhibiting a particular palindromic motif and might recruit 
a demethylase that will cause the silencing of the targeted genes 
(S. Zhang et al. 2015, Butel et al. 2017, van Rooijen et al. 2020). 
However, for NAC50 and NAC52, we could still demonstrate a 
positive association with the histone variant H2A.Z, represent-
ing a hallmark of cis-regulatory regions (Sequeira-Mendes et al. 
2014).

Regarding the generalization of models across organisms, we 
obtained encouraging results, even though we need to remain 
cautious. When we transferred the models built from S.lycop-
ersicum ripening fruits and Z.mays seedlings to A.thaliana
seedlings, we obtained good performances, although lower 
than those achieved by the models built from A thaliana
seedlings. On the other hand, we observed that the O.sativa

model did not reach high AUC values when applied to 
A.thaliana seedlings. This might be related to a relatively low 
predictivity power of the DHS, DGF and cytosine methyla-
tion data obtained in O.sativa seedlings. We observed that the 
prediction performances of TFBSs in O.sativa seedlings were 
significantly enhanced when data on chromatin marks were 
added to those of DHS, DGF and cytosine methylation. Wim-
trap can therefore help to select the best data available for 
a given organism and condition. However, further analyses 
will be needed to understand the differences in predictivity 
of features across organisms and conditions. This might be 
due to technical issues or species/condition specificities in the 
gene regulation mechanisms. In any case, this illustrates the 
importance of assessing the performances of a model to val-
idate it. It is good practice to start with a model integrating 
the features of layers 1–3 in addition to the DGF and DHS 
(if available). If this clearly does not meet the expected AUC 
levels, then it is worth searching for additional chromatin state
features.

A user-friendly and flexible tool
The user of Wimtrap can easily obtain TFBS and gene target 
predictions in any plant species for which genomic data of 
layers 1–3 are available and in any condition for which fea-
tures of layers 4 and 5 can be obtained. Our approach can 
be fully reproduced with our R package and Shiny interface, 
with a great flexibility regarding the input data, pattern match-
ing algorithm and machine learning technique. Wimtrap can 
also be used to compare other genomic regions than just the 
cis-regulatory elements (e.g. transgene/gene, enhancers/pro-
moters, poised enhancers/active enhancers). In addition, pre-
integrated models and databases allow the tools for hundreds 
of TFs to be immediately run for A.thaliana, not only in the 
seedlings and flowers but also in the whole roots, root hairs, 
seed coats and under several light treatments; for S.lycoper-
sicum, not only in ripening fruits but also in immature fruits; 
and for O.sativa seedlings and Z.mays seedlings (Tian et al.
2020).

The performance of Wimtrap obviously depends on the 
genomic features which are provided to the models and, there-
fore, on the tools that were used to generate such data. When 
developing Wimtrap, we mainly focused on its flexibility in 
terms of input data as well as on its being user-friendly. We 
aimed at making the building of predictive models for new 
organisms/conditions easy, based on the available data. Here 
we did not directly compare Wimtrap with existing methods 
but compared the rationales implemented by a wide range of 
tools by assessing separately different layers of features. Other 
valuable resources can be used to predict TF target genes in 
plants, such as TEPIC 2 or ConsReg (Schmidt et al. 2019, Song 
et al. 2020). However, TEPIC 2 requires Linux operating sys-
tems and ConsReg requires expression data, which might be
limiting.
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Examples of application of Wimtrap
The activity and function of many TFs are specific to the plant 
organ and tissue, or to the condition considered (Franco-Zorrilla 
et al. 2014, Song et al. 2020). This is the case for some TFs 
belonging to the R2R3 MBW complex, which act synergistically 
to control the genes involved in the regulation of the late steps 
of flavonoid and proanthocyanidin biosynthesis and accumula-
tion in seeds. More specifically, the MYB (TT2), bHLH (TT8) and 
WDR (TTG1) protein complex is active in Arabidopsis seeds, 
with TT2 and TT8 playing a major role in the complex and are 
the main TFs controlling flavonoid genes (Lepiniec et al. 2006, 
Xu et al. 2015, Corso et al. 2020).

As an example of the use of Wimtrap, we showed how novel 
insights into the biological functions of components of a TF 
complex can be obtained at the organ level. Compared with 
roots and flowers, a higher number of enriched GO categories 
specific to phenylpropanoid metabolism have been identified 
for TT2 and TT8 target genes in seeds, while no enrichment 
was observed for TTG1 targets. Previous work highlighted a 
major role for TT2 and TT8 in the regulation of flavonoid 
late biosynthetic genes in seeds (Xu et al. 2015). As for TTG1, 
while its participation in the MBW complex has been demon-
strated, less information is available about its regulation and 
functions (Baudry et al. 2004, Quattrocchio et al. 2006). Hence, 
a key role for TT2 and TT8 in flavonoid regulation and the 
major impact of these TFs in seeds have been confirmed. The 
results obtained for TT2, TT8 and TTG1 highlighted a strong 
impact of the organ and/or the condition on the prediction 
of TF target genes (Fig. 6). This is an important aspect of
Wimtrap.

In conclusion, we developed an effective approach to study 
the specificities of the plant cis-regulatory elements and made 
available a bioinformatic tool to improve the prediction of 
TFBSs, which comes with pre-built models for A.thaliana, 
S.lycopersicum, O.sativa and Z.mays. Prediction of potential 
TFBSs can also be useful for comparing TFBSs of homologous 
genes, for choosing mutation sites or for inferring potential reg-
ulators of co-regulated genes. One of the strengths of such an 
approach is that it can retrieve cis-regulatory elements that are 
overlooked by ChIP/chip-seq data, as they can only catch stable 
interactions (Mundade et al. 2014), while TF binding events are 
often transient (Li et al. 2019). The predictions might be espe-
cially relevant when they are confronted with expression data 
(Rister and Desplan 2010, Li et al. 2019).

In the near future, the advent of new technologies such 
as the ChIP-exo/ChIP-nexus and ATAC-seq will be beneficial. 
Peaks of the ChIP-exo/ChIP-nexus are narrower than the ChIP-
chip/seq data and therefore allow more accurate identification 
of the location of binding sites (Welch et al. 2017). It will help 
us in particular to better decipher the proportion of TF binding 
events that are due to direct binding (on primary/alternative 
motifs) and indirect binding. As regards ATAC-seq, it is emerg-
ing as a cost-effective alternative to DNase I-seq (Karabacak 
Calviello et al. 2019). Relevant data about new organisms and/or 
conditions will soon become available.

Materials and Methods

Data
Data on A.thaliana seedlings and flowers, and S.lycopersicum ripening 
fruits were obtained from Arabidopsis RegNet (Heyndrickx et al. 2014), 
PlantRegMap/PlantTFDB (Jin et al. 2017, Tian et al. 2020), PlantDHS (Zhang 
et al. 2016), the Gene Expression Omnibus (Clough and Barrett 2016) and 
Ensembl Plants Biomart (Kinsella et al. 2011) databases. Additional information 
was retrieved from published articles (Gómez-Porras et al. 2007, Thomas et al. 
2007, Baxter et al. 2012, Brandt et al. 2012, Haudry et al. 2013, Nuruzzaman 
et al. 2013, Fujisawa et al. 2014, Sequeira-Mendes et al. 2014, Zhiponova et al. 
2014, Wang et al. 2015, Gaillochet et al. 2017, Ye et al. 2017) (Supplementary 
Tables S1–S14). The filters that were used to query Ensembl Plants Biomart and 
the Gene Expression Omnibus are described in Supplementary text S1. For 
each species considered, we downloaded the genome sequence and protein-
coding transcript models (using the TAIR10 assembly for A.thaliana, SL3.0 for 
S.lycopersicum, IRGSP-1.0 for O.sativa L. ssp. Japonica and Zm-B73-REFERENCE-
NAM-5.0 for Z.mays B73). In addition, we obtained 57 TF-ChIP-seq peak files 
(28 obtained in A.thaliana seedlings, 3 in A.thaliana flowers, 5 in S.lycorper-
sicum ripening fruits, 4 in O sativa L. ssp. Japonica seedlings and 17 in Z.mays
B73), five sets of conserved elements (2 for A.thaliana, 1 for S.lycopersicum, 
1 for O.sativa L. ssp. Japonica and 1 for Z.mays B73), five sets of DNase I-
seq and BS-seq data (one each for A.thaliana seedlings, A.thaliana flowers, 
S.lycopersicum ripening fruits, O.sativa L. ssp. Japonica seedlings and Z.mays B73 
seedlings), one partitioning of the genome between nine categories of chro-
matin stated (one for A.thaliana seedlings), two sets of H3K4me3, H3K4me3, 
H3K36me3, H3K27ac, H3K9ac, H4K12ac and H3K27me3 ChIP-seq data (one 
each for A.thaliana seedlings and O.sativa L. ssp. Japonica seedlings) and one set 
of MNase-seq, H2A.Z, H2BuB18, H3K4me1, H3K4me2, H3K9me2, H3K27me1, 
H3K14ac, H4K5ac, H3K18ac, H3K56ac, H3T3ph, H4K8ac and H4K16ac ChIP-seq 
data (for A.thaliana seedlings). Furthermore, we directly collected the motifs 
of 55 of the 57 TFs, either as a PWM or as a logo. Details about the source 
of the data, the experimental design as well as the data analysis pipeline are 
provided in Supplementary Tables S1–S14. In particular, for ChIP-seq data, 
the number of samples is comprised between 1 and 4 (2.1 on average ± 0.95 
SD), and the false discovery rate (FDR) is between 10–2 and 10–5 (0.04 on 
average ± 0.02 SD).

Data pre-processing
PWMs. Relevant data were pre-processed to obtain the
jaspar raw pfm format (Castro-Mondragon et al. 2022). PWMs could be 
obtained: (i) directly from the PlantTFDB database (Jin et al. 2017), (ii) by 
de novo discovery analysis of the ChIP-seq data using peak motifs (Thomas-
Chollier et al. 2012) or (iii) by measuring the relative heights of the letters at each 
position of a consensus sequence or logo, using the arbitrary total count num-
ber of 1,000. TFs for which such pre-processing steps were necessary to obtain 
the PWM are specified in Supplementary Tables S1, S4, S6, S9 and S12.

Gene structures. Basic manipulations using the R packages
GenomicRanges (Lawrence et al. 2013) and rtracklayer (Lawrence et al. 2009) 
were required to obtain the location of the TSS, transcription termination 
sites (TTS), proximal promoters, promoters, 5′-UTRs, coding sequences (CDS), 
introns, 3′-UTRs and downstream regions in the BED format (Kent et al. 2002). 
For the gene structures, we used as input the text files downloaded from the 
Ensembl Plants Biomart following the procedure detailed in Supplementary 
text 1.

Conserved elements and chromatin states. The conserved non-
coding sequences of A.thaliana identified by Thomas et al. (2007), Baxter et al. 
(2012) and Haudry et al. (2013) were merged by union and exported in BED for-
mat R using GenomicRanges (Lawrence et al. 2013) and rtracklayer (Lawrence 

12

D
ow

nloaded from
 https://academ

ic.oup.com
/pcp/advance-article/doi/10.1093/pcp/pcac095/6633738 by guest on 11 August 2022



Plant Cell Physiol. 00(00): 1–17 (2022) doi:https://doi.org/10.1093/pcp/pcac095

et al. 2009). The conserved elements of A.thaliana and S.lycopersicum along with 
their phastcons scores were downloaded from PlantRegMap as GTF files and 
directly used as such. The genome partition into nine chromatin states defined 
by Sequeira-Mendes et al. (2014) was encoded in BED files. Each region was 
annotated in the ‘name’ field by the chromatin state (from ‘A’ to ‘I’) and in the 
‘score’ field by a dot to indicate to Wimtrap to extract a categorical feature.

ChIP/DNase/BS/MNase peaks. In the majority of cases, results of peak-
calling analyses could be obtained from the Gene Expression Omnibus or 
supporting information of peer-reviewed articles, either in the BED format or in 
formats that could be easily converted to BED using R or awk (Aho et al. 1988). 
If applicable, peaks from replicates were then merged by union and the scores 
were summed on overlapping regions using GenomicRanges (Lawrence et al. 
2013) and rtracklayer (Lawrence et al. 2009) R packages. In some cases, only data 
resulting from signal generation analysis were available. Such data consisted of 
UCSC tracks defining a signal (the fold change over control) along the genome. 
These formats were wig, bedGraph and bigWig (Kent et al. 2002). To generate 
BED files with the location and summit score of peaks based on data encoded 
in such formats, we applied the sigWin function of the CSAR R package (see the 
code provided in Supplementary text 2) (Muiño et al. 2011). The bigWig and 
bedGraph files needed to be converted to wig files first, with the bigWigToWig 
or bedGraphToWig UCSC program. The wig files allowed the partitioning of 
the genome into non-overlapping and scored genomic regions of equal length 
and equally spaced (=bins). Bins were filtered according to a minimum score 
threshold. For ChIP-seq data, it was a fold change of 1, except if this threshold 
resulted in such a high number of bins that it was impossible to load them into 
the R session. Then, a more stringent threshold was considered: the median of 
the fold changes. For cytosine methylation, a ratio of methylated cytosine of a 
minimum of 0.2 was considered. Once the bins were filtered, the scores of the 
overlapping bins between replicates were summed between replicates, and bins 
showing a gap <30 bp were subsequently merged. The resulting intervals were 
finally annotated with the score at the peak summit. Data that required pre-
processing with sigWin are specified in Supplementary Tables S3, S5, S8, S11 
and S14.

DGFs. The location and scores of DGFs obtained with the footprinting2012
(Neph et al. 2012) tool for A.thaliana seedlings could be directly downloaded 
in BED format from PlantRegMap (Tian et al. 2020). Related data are encoded 
in BED files. For the A.thaliana flowers and S.lycopersicum ripening fruits, we 
reproduced the PlantRegMap analysis pipeline starting from the raw sequences 
of the reads generated by DNase-seq. The code used to obtain the DGFs for A. 
thaliana flowers is provided in Supplementary text 3.

Identification of candidate TF-binding sites
Candidate TFBSs were located by genome scanning against the PWMs using 
the matchPWM function of the Biostrings R package (Pagès et al. 2019). A 1 bp 
step sliding window was moved all along the genome. The length of the slid-
ing window was set to the length of the considered PWM. At each step, the 
sequence of the sliding window was aligned to the PWM. Each nucleotide in 
the sequence was associated with its weight at its corresponding position in the 
PWM and the sum was operated over these weights. To calculate the P-values, 
we carried on an empirical assessment of the background probability density 
of the distribution of the match scores. This could be achieved based on ran-
dom genomic regions due to the low prevalence of actual TFBSs. Sequences of 
5,000 bp were thus randomly sampled at a rate of 200 bp by chromosome and 
were scanned at each base pair on both strands. The resulting match scores were 
ordered in increasing order and associated with their P-value, i.e. the proportion 
of matches with an equal or superior score.

Our pattern matching approach was compared with FIMO, a popular 
matching tool (Grant et al. 2011, Jayaram et al. 2016). Using the same P-
value detection threshold of 10–3 , we found that 75% of the PWM matches 

detected using Wimtrap were also discovered by FIMO. Furthermore, a posi-
tive correlation of 0.77 (P-value < 2.2 × 10–16) between the log10 of the P-values 
computed by the two methods was obtained (Supplementary Fig. S9). These 
considerations indicated the accuracy of our method.

Candidate TFBSs were defined as the PWM matches with a P-value ≥10–3 . 
This threshold allowed the detection, for the 28 TFs related to A.thaliana
seedlings, of the most prevalent (‘primary’) motif on two-thirds on aver-
age of the cognate ChIP peaks, which corresponds to previous observations 
(Heyndrickx et al. 2014) (Supplementary Figs. S9, S10, Supplementary 
Table S15).

Feature construction
Candidate TFBSs were annotated with five layers of features. Layer 1 included 
the P-value of the match score as well as the number of other homotypic 
matches, i.e. of matches against the same PWM as that of the candidate 
binding site, occurring at ± 200 bp and ± 500 bp from the center of the can-
didate TFBS. Layer 2 was relative to the position of the candidate TFBS on 
the gene. It encompassed the distance to the closest TSS and TTS but also 
as many features as there were gene structures. The structure found at the 
center of the considered candidate was associated with the score of ‘1’; the 
other structures were granted the score of ‘0’. In the case where several struc-
tures overlapped the same potential TFBS, only one structure was left with 
a score of ‘1’, considering the following rule of preference: Proximal pro-
moter > Promoter/downstream regions > Coding sequence > 5′-untranslated 
region > 3′-untranslated region > intron. Layers 3–5 included all the other data 
and were respectively associated with the sequence conservation, the DGF and 
the chromatin state/opening. Categorical features (cf. the partitioning of the 
genome of A.thaliana into nine functional chromatin states) were extracted by 
performing ‘dummy variable encoding’ to create as many variables as there were 
categories and by assigning the value of ‘1’ to the categories overlapped by the 
center of the candidate TFBSs and 0 to the others. As for constructing features 
from ‘numerical’ data (scored genomic regions) and ‘overlapping’ data (non-
scored genomic regions satisfying a given property)—which represented most 
of the data of layers 3–5—we calculated the base pair average of each consid-
ered features around the PWM matches, on three different scales: on windows 
of ± 10, 200 and 1,000 bp from the center of the candidate TFBSs. These rep-
resented, respectively, the scale of a cis-regulatory element, a ChIP peak and a 
promoter. Mathematically, our procedure of extraction can be described as fol-
lows. Let us consider the extracted data as an ensemble of n genomic regions 
each defined by their location {y1 , y2 , …, yn| 𝑦= (chromosome, start, end)} 
and by their scores {x1 , x2 , …, xn} (x1,..,n = 1 for overlapping features). Let be 𝑥̄, 
the average score on the l bp window defined by the region w = (chromosome, 
start, end). Considering that {z1 , z2 , …, zn} are the length of the overlap of each 
region {y1 , y2 , …, yn} with w: 

𝑥̄ =
𝑛

∑
𝑖=1

𝑥𝑖 ∗ #𝑧𝑖
𝑙

The extracted features were scaled between 0 and 1 the features extracted 
from each TF (to allow the comparison of the same feature in different experi-
ments, conditions or organisms).

Candidate TF-binding site labeling
The candidate binding sites for a given TF were labeled as ‘positive’, i.e. actual 
active cis-regulatory elements (in a considered condition), if they were overlap-
ping a ChIP peak of the TF (in the condition considered). They were considered 
as ‘negative’ if they did not. The so-called ‘target’ feature was set to ‘1’ for the 
candidates labeled as active cis-regulatory elements and ‘0’ for the others. The 
length of the ChIP peaks was limited to ± 200 bp from the peak centers as most 
of the PWM matches were located in this interval (Supplementary Table S15).
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Dataset balancing and splitting
Applying the steps described above allowed us to build a master dataset. This 
master dataset was at first balanced. For each TF, we randomly selected as many 
‘negative’ potential candidate sites as there were ‘positive’ candidates, using 
the sample.int function of the base package in R, and removed those from the 
dataset. The selected ‘negative’ instances were kept in the master dataset and 
the others were removed. Balancing a dataset is a classical approach to over-
come the tendency of binary classifiers to categorize all the instances into the 
most prevalent class (here, that of the ‘negative’ potential binding sites) when 
the minority class (the ‘positive’ potential binding sites) is rarely represented 
(Kotsiantis et al. 2006). The master dataset was then split into three TF-pooled 
datasets, according to the organism and the condition: A.thaliana seedlings, 
A.thaliana flowers and S.lycopersicum ripening fruits. These datasets were then 
subdivided into TF-specific datasets.

Machine learning
Models were obtained by machine learning to predict the label of candidate 
TF-binding sets. The machine learning step was preceded by a selection of the 
features to integrate in the models. This was based on the pairwise correlations 
between the features. If two features had a correlation >95%, the feature with 
the largest mean absolute correlation with the other features was removed. This 
feature selection was conducted with the caret R package (Kuhn 2020).

To select the algorithm of machine learning, we trained models based on 
each of the 28 TF-specific datasets generated from A.thaliana seedling data. The 
performances of the models were estimated using the 5-fold cross-validation 
strategy: each TF-specific dataset is cut into five smaller datasets of equal size. A 
model is trained with four of the five parts while the area under the ROC curve 
(AUC) is computed by applying the model on the remaining part. The process 
is repeated again four times so that each of the five parts is used for computing 
the AUC. The final AUC of a model is the mean of the five AUCs thus obtained. 
The AUCs were calculated with the pROC R package (Robin et al. 2011).

Initially, we evaluated algorithms of ‘random forest’, ‘logistic regression’ 
and ‘gradient boosting’. Gradient boosting was clearly outcompeting (data not 
shown). We tested three different algorithms of gradient boosting: CatBoost 
(Prokhorenkova et al. 2019), LightGBM (Ke et al. 2017) and XGBoost (Chen and 
Guestrin 2016). The analyses were implemented with the respective packages 
in R (Dorogush et al. 2018, Chen et al. 2021, Shi et al. 2021). The following 
hyperparameters were set for all three algorithms: (maximum) depth of the 
tree = 6, learning rate = 0.3, number of iterations = 100, coefficient at the L2 
regularization term of the cost function = 10, proportion of features used at 
each split selection = 1 and minimum instance in a leaf = 1. Parameters specific 
to each algorithm were set as follows: for CatBoost, number of split for numeri-
cal values = 64; for lightGBM, maximum number of leaves = 25 and number of 
threads = 2; for XGBoost, booster = tree and minimum loss reduction required 
to make a further partition on a leaf node of the tree = 0. All the other param-
eters are the default parameters. A mean AUC of 0.925 was achieved with Cat-
Boost, and 0.927 with both lightGBM and XGBoost (Supplementary Fig. S11). 
We selected XGBoost as it is a method that has been well established for sev-
eral years (Chen and Guestrin 2016). XGBoost is an algorithm which adds the 
predictions of an ensemble of regression trees. It builds the regression tree suc-
cessively, each new tree being trained to predict the residuals, i.e. the deviation 
between the predicted values of the actual values, output by the former tree. 
Therefore, for a XGBoost model formed of K regression trees: 

𝑦𝑖 = Φ(𝑥𝑖) =
𝐾

∑
𝑘=1

𝑓𝑘 (𝑥𝑖)

Where 𝑦𝑖 is the ith prediction, obtained by addition of the outputs of the 
K regression trees, based on the vector of features 𝑥𝑖 . The regression trees are 
defined so that the regularized objective is minimized: 

ℒ(Φ) = ∑
𝑖

𝑙(𝑦𝑖,𝑦𝑖) + ∑
𝑘

Ω(𝑓𝑘)

Where 

Ω(𝑓) = 𝛾𝑇 + 1
2

𝜆||𝑤||2

The function is the loss function which measures the difference between 
𝑦𝑖 , the ith prediction, and 𝑦𝑖 , the actual ith value (= 1 if the ith instance is a 
‘positive’ candidate TFBS, = 0 if is a negative one). T is the number of leaves in 
the tree 𝑓, λ the regularization parameter and 𝑤 is a vector representing all the 
possible scores that can output 𝑓. Ω is a penalty function that allows avoiding 
overfitting.

Evaluation strategy
The performances of the models were assessed by computing the area under 
the ROC curve (AUC), which is a valid measure of the accuracy when computed 
from balanced datasets. Is A candidate TFBS is predicted as ‘positive’ or ‘nega-
tive’ according to whether its prediction score (output by a XGBmodel based on 
its annotations with the extracted features) is, respectively, superior or inferior 
to a certain threshold. The ROC curve plots the sensitivity and the 1–specifity 
obtained with increasing prediction score thresholds. The sensitivity is equal to 
TP/(TP + FN) and the specificity to TN/(TN + FP), where TP stands for ‘true 
positive’—the total number of ‘positive’ candidates predicted as ‘positive’—, 
FN for ‘false negative’—the total number of ‘positive’ candidates predicted as 
‘negative’—, TN for ‘true negative’—the total number of ‘negative’ candidates 
predicted as ‘negative’—and FP for ‘false positive’—the total number of nega-
tive candidate predicted as ‘positive’. The higher the AUC, the more accurate 
a model is. An AUC of 1 corresponds to a perfect guess while an AUC of 0.5 
corresponds to a random guess.

The performances of the TF-specific models were evaluated as described in 
the previous section. Models obtained from TF-pooled models were validated 
in a different way. Two procedures were possible. In the first case, models were 
built with all but one of the TFs of the dataset. The TF set aside was then used to 
compute the AUC. This allowed us to estimate the generalization of the mod-
els across TFs in a given organism/condition. In the second case, models were 
trained based on a TF-pooled dataset and were tested on another TF-pooled 
dataset. This allowed us to study the transferability of the models from one 
organism/condition to another.

Prediction of the targets of the MBW complex
For each of the 28 TFs studied in A.thaliana seedlings, all the protein-coding 
genes encoded in the genome of A.thaliana were annotated with the highest 
prediction score among their cognate predicted TFBSs. They were then labeled 
as ‘positive’ or ‘negative’ potential gene targets depending on whether their TSS 
was the closest or not to an occurrence of the motif of the TF on ChIP peaks. 
The optimal threshold to predict gene targets was determined using the coords
function of the pROC R package, based on the ROC curves obtained with the 
28 TFs studied by ChIP-seq in A.thaliana seedlings.

The potential gene targets of the MBW components in A.thaliana flowers 
were obtained with the TF-pooled model trained from the three TFs studied 
in A.thaliana flowers, based on all features of layers 1–4 and on the DHS. For 
running predictions in roots and seeds, we transferred to these organs the TF-
pooled model trained from the 28 TFs studied in A.thaliana seedlings, also 
based on all the features of layers 1–4 in addition to the DHS (data about 
other features of layer 5 were not available in flowers, seeds and roots). For 
TT2 and TT8, we determined the genes whose TSS was the closest to an occur-
rence of their respective motifs (Jacob et al. 2021) with a Wimtrap prediction 
score ≥ 0.86. For TTG1, we determined the genes whose TSS was the clos-
est of two neighboring motifs—one G-Box close to one AC-rich motif or one 
MYB motif—maximum distance between the two motifs = 30 bp (Xu et al. 
2015)—both with prediction scores ≥ 0.86.
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Supplementary Data

Supplementary data are available at PCP online.

Data Availability

Wimtrap can be downloaded from Github as a classical R pack-
age (https://github.com/RiviereQuentin/Wimtrap) or as a user-
friendly R Shiny interface (https://github.com/RiviereQuentin/
WimtrapWeb). It is fully documented by a manual, user 
guide and tutorial video (https://www.youtube.com/watch?v=
6371fN7dkak). It allows reproduction of our approach to build 
new models for other conditions and/or organisms. The data 
underlying this article are available on GitHub (https://github.
com/RiviereQuentin/carepat), as well as the R package (https://
github.com/RiviereQuentin/Wimtrap) and R Shiny application 
(https://github.com/RiviereQuentin/WimtrapWeb).

Rivier̀e_et_al.SuppTextS1-3&SuppFig1-11.pdf is available
here (temporary link): https://owncloud.ulb.ac.be/index.php/
s/PVGijICtXeTn1Bk.

Rivier̀e_et_al.SuppTables1-14.xlsx is available here
(temporary link): https://owncloud.ulb.ac.be/index.php/s/
yxN0nT9DwJBQwwu.
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